图7 XZ-Ordering最大分辨率为2时的编码四、总结空间填充曲线将多维数据转换到一维整数域上,并且尽可能保持了多维空间的特性,使得空间相近的空间在转换后的整数上也尽可能地相近。Z曲线和Hibert曲线是较为常用的空间填充曲线,其中Z曲线较容易实现。XZ-Ordering扩展了Z曲线,使得它能较好地表示非点空间对象,如线和多边形对象。 参考文献[1] https://www.geomesa.org/[2] http://just.urban-computing.com/[3] Ruiyuan Li, Huajun He, RubinWang, Yuchuan Huang, Junwen Liu, Sijie Ruan, Tianfu He, Jie Bao, and Yu Zheng.2020. Just: Jd urban spatio-temporal data engine. In 2020 IEEE 36thInternational Conference on Data Engineering (ICDE). IEEE, 1558–1569.[4] Tetsuo Asano, Desh Ranjan,Thomas Roos, Emo Welzl, and Peter Widmayer. 1997. Space-filling curves andtheir use in the design of geometric data structures. Theoretical ComputerScience 181, 1 (1997), 3–15.[5] https://en.wikipedia.org/wiki/Space-filling_curve[6] https://baike.baidu.com/item/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E6%9B%B2%E7%BA%BF/938155?fr=aladdin[7] ChristianBöhm, Gerald Klump, and Hans-Peter Kriegel. 1999. XZ-Ordering: A Space-FillingCurve for Objects with Spatial Extension. In Proceedings of the 6thInternational Symposium on Advances in Spatial Databases (SSD '99).Springer-Verlag, Berlin, Heidelberg, 75–90.
2 条评论