25
08/2015
[LeetCode] Edit Distance
Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
解题思路:
这道题计算两个文本的编辑距离。用动态规划的思想做。d[i][j]表示从字符串a(0..i)变换成b(0...j)的最小变换次数。则有:
class Solution { public: int minDistance(string word1, string word2) { int m = word1.length(); int n = word2.length(); if(m == 0 || n == 0){ return max(m, n); } vector<vector<int>> d(m + 1, vector<int>(n + 1, 0)); for(int i = 0; i<=n; i++){ d[0][i] = i; } for(int i=0; i<=m; i++){ d[i][0] = i; } for(int i = 1; i<=m; i++){ for(int j = 1; j<=n; j++){ if(word1[i-1] == word2[j-1]){ d[i][j] = d[i-1][j-1]; }else{ d[i][j] = min( min(d[i][j-1], d[i-1][j]), d[i-1][j-1] ) + 1; } } } return d[m][n]; } };
上述代码的时间复杂度和空间复杂度均为O(n^2)。可以将代码改成O(n)的空间复杂度。
class Solution { public: int minDistance(string word1, string word2) { int m = word1.length(); int n = word2.length(); if(m == 0 || n == 0){ return max(m, n); } vector<int> d(n + 1, 0); for(int i = 0; i<=n; i++){ d[i] = i; } for(int i = 1; i<=m; i++){ int left = i; int leftUp = i - 1; for(int j = 1; j<=n; j++){ int up = d[j]; int newVal; if(word1[i-1] == word2[j-1]){ newVal = leftUp; }else{ newVal = min(min(left, up), leftUp) + 1; } leftUp = d[j]; d[j] = newVal; left = d[j]; } } return d[n]; } };
转载请注明:康瑞部落 » [LeetCode] Edit Distance
0 条评论