[LeetCode] Maximal Rectangle
Maximal Rectangle
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.解题思路;
题意表示找到右全1形成的最大的矩形块。
解法1:
用动态规划做,若d[i][j]表示以matrix[i][j]为右下角的矩形区域中,满足条件的最大矩形块。若matrix[i][j]=='0',则d[i][j] = max(d[i-1][j], d[i][j-1]),若matrix[i][j]=='1',则d[i][j] = max(d[i-1][j], d[i][j-1], 包含matrix[i][j]且以之为右下角的最大矩形块)。但是如何求“包含matrix[i][j]且以之为右下角的最大矩形块”呢?我最开始想到蛮力法,代码如下所示:
class Solution { public: int maximalRectangle(vector<vector<char> > &matrix) { int m = matrix.size(); if(m == 0){ return 0; } int n = matrix[0].size(); if(n==0){ return 0; } int** d=new int*[m + 1]; for(int i=0; i<=m; i++){ d[i]=new int[n + 1]; } for(int i=0; i<=m; i++){ d[i][0]=0; } for(int i=0; i<=n; i++){ d[0][i]=0; } for(int i=1; i<=m; i++){ for(int j=1; j<=n; j++){ d[i][j]=max(d[i-1][j], d[i][j-1]); if(matrix[i-1][j-1]=='1'){ //计算以i-1,j-1元素为右下角的最大全1矩阵的面积 //找到i方向最小的i int minI = i-1; while(minI >=0 && matrix[minI][j-1]=='1') minI--; minI = max(minI, 0); //找到j方向最小的j int minJ = j-1; while(minJ >=0 && matrix[i-1][minJ]=='1') minJ--; minJ = max(minJ, 0); if((i - minI)*(j - minJ) > d[i][j]){ int maxArea = 0; for(int tempI = minI; tempI < i; tempI++){ for(int tempJ = minJ; tempJ < j; tempJ++){ int area = getArea(matrix, tempI, i-1, tempJ, j-1); if(area!=0){ maxArea = max(area, maxArea); break; } } } d[i][j]=max(d[i][j], maxArea); } } } } int result = d[m][n]; for(int i=0; i<=m; i++){ delete[] d[i]; } delete[] d; return result; } private: int max(int a, int b){ return a>b?a:b; } int getArea(vector<vector<char>>& matrix, int startI, int endI, int startJ, int endJ){ bool allOne = true; for(int i=startI; i<=endI; i++){ for(int j=startJ; j<=endJ; j++){ if(matrix[i][j]=='0'){ allOne = false; break; } } if(!allOne){ break; } } if(allOne){ return (endI - startI + 1) * (endJ - startJ + 1); }else{ return 0; } } };
居然也能通过,但运行时间是874ms,显然是不对的,因为其最坏情况运行时间复杂度为O(m2*n2)
解法2
为了能尽快算出“包含matrix[i][j]且以之为右下角的最大矩形块”,可以记录每一行全1的高度。代码如下:
class Solution { public: int maximalRectangle(vector<vector<char> > &matrix) { int m = matrix.size(); if(m == 0){ return 0; } int n = matrix[0].size(); if(n==0){ return 0; } //动态规划数组 int** d=new int*[m + 1]; for(int i=0; i<=m; i++){ d[i]=new int[n + 1]; } for(int i=0; i<=m; i++){ d[i][0]=0; } for(int i=0; i<=n; i++){ d[0][i]=0; } //记录全1的高度 int* h = new int[n + 1]; for(int i=0; i<=n; i++){ h[i] = 0; } for(int i=1; i<=m; i++){ for(int j=1; j<=n; j++){ d[i][j]=max(d[i-1][j], d[i][j-1]); if(matrix[i-1][j-1]=='1'){ h[j]++; int maxArea = h[j]; int minH = h[j]; for(int k=j-1; k>0; k--){ if(h[k] == 0){ break; } minH = minH > h[k] ? h[k] : minH; maxArea = max(maxArea, minH * (j - k + 1)); } d[i][j] = max(d[i][j], maxArea); }else{ h[j]=0; } } } int result = d[m][n]; for(int i=0; i<=m; i++){ delete[] d[i]; } delete[] d; delete[] h; return result; } private: int max(int a, int b){ return a>b?a:b; } };
这样,算法的时间复杂度降到了O(m*n*n),这是坏的情况。在LeetCode中运行时间降到了28ms。
解法3:
后来想,其实我无需记录某个位置的最大值,只需记录全局的最大值,即可以不用动态规划的思想,下面是解法2的改进代码:
class Solution { public: int maximalRectangle(vector<vector<char> > &matrix) { int m = matrix.size(); if(m == 0){ return 0; } int n = matrix[0].size(); if(n==0){ return 0; } //记录全1的高度 int* h = new int[n]; for(int i=0; i<n; i++){ h[i] = 0; } int result = 0; for(int i=0; i<m; i++){ for(int j=0; j<n; j++){ if(matrix[i][j]=='1'){ h[j]++; int maxArea = h[j]; int minH = h[j]; for(int k=j-1; k>=0; k--){ if(h[k] == 0){ break; } minH = minH > h[k] ? h[k] : minH; maxArea = max(maxArea, minH * (j - k + 1)); } result = max(result, maxArea); }else{ h[j]=0; } } } return result; } private: int max(int a, int b){ return a>b?a:b; } };
这样,时间复杂度虽然没有变,但是省去了很大的空间开销,从而也节省了时间。LeetCode的运行时间为19ms
解法4:
在网上查了一下,该题竟然还可以在O(m*n)的时间复杂度做完,用到栈的思想,具体见http://fisherlei.blogspot.com/2012/12/leetcode-largest-rectangle-in-histogram.html,这道题是计算直方图的最大面积。下面是代码:
class Solution { public: int maximalRectangle(vector<vector<char> > &matrix) { int m = matrix.size(); if (m == 0){ return 0; } int n = matrix[0].size(); if (n == 0){ return 0; } int result = 0; //记录全1的高度 int* h = new int[n+1]; //多申请一个空间,稍后会知道他的好处 for (int i = 0; i<=n; i++){ h[i] = 0; } for (int i = 0; i<m; i++){ stack<int> s; int tempMax = 0; //某一行最大的area bool hCounted = false; for (int j = 0; j<=n; j++){ if(!hCounted&&j!=n){ if (matrix[i][j] == '1'){ h[j]++; } else{ h[j] = 0; } hCounted = true; } if (s.empty() || h[s.top()]<h[j]){ //入栈 s.push(j); hCounted = false; } else{ //h多申请了一个空间,并赋值为0,保证会最终会执行到此步 int temp = s.top(); s.pop(); tempMax = max(tempMax, h[temp] * (s.empty() ? j : (j - s.top() - 1))); j--; //这里j不变,表示找出所有大于当前的,并出栈 } } result = max(result, tempMax); } delete[] h; return result; } private: int max(int a, int b){ return a>b ? a : b; } };
二次刷题2015-10-10:
class Solution { public: int maximalRectangle(vector<vector<char>>& matrix) { int m = matrix.size(); if(m == 0){ return 0; } int n = matrix[0].size(); if(n == 0){ return 0; } vector<int> h(n, 0); int result = 0; for(int i=0; i<m; i++){ for(int j = 0; j<n; j++){ if(matrix[i][j]=='1'){ h[j]++; int maxArea = h[j]; int minH = h[j]; for(int k = j-1; k>=0; k--){ minH = min(minH, h[k]); maxArea = max(maxArea, minH * (j - k + 1)); } result = max(maxArea, result); }else{ h[j] = 0; } } } return result; } };
0 条评论