[LeetCode] Product of Array Except Self
Product of Array Except Self
Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
解题思路:
这道题的题意为给定一个数组A,求数组B,其中B为A中除对应元素外所有其他数组元素的乘积。
要求不能用除法,而且时间复杂度为O(n)
解法1:倘若用除法,先求出A中所有元素的乘积,然后将积除以对应元素。注意讨论是否为0。且本题不许用除法。
解法2:B中的元素等于对应元素A中所有左边元素的乘积*A中所有右边元素的乘积。可以用两个数组left、right记录所有对应元素左边和右边的乘积,然后相乘即可。
class Solution { public: vector<int> productExceptSelf(vector<int>& nums) { int len = nums.size(); vector<int> left(len, 1); //当前元素左边的乘积 vector<int> right(len, 1); //当前元素右边的乘积 vector<int> result; for(int i=1; i<len; i++){ left[i] = left[i-1]*nums[i-1]; } for(int i=len-2; i>=0; i--){ right[i] = right[i+1]*nums[i+1]; } for(int i=0; i<len; i++){ result.push_back(left[i] * right[i]); } return result; } };
解法3:题意要求以空间复杂度为O(1)的方法来解决,上种解法的空间复杂度为O(n)。优化后的代码如下:
class Solution { public: vector<int> productExceptSelf(vector<int>& nums) { int len = nums.size(); vector<int> result(len, 1); for(int i=1; i<len; i++){ result[i] = result[i - 1] * nums[i - 1]; } int right = 1; for(int i=len-2; i>=0; i--){ right *= nums[i + 1]; result[i] = result[i] * right; } return result; } };
0 条评论