[LeetCode] Maximum Subarray

Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice. 

解题思路:

题意为找出连续的和最大的子数组的和。可以有两种方法来做,动态规划以及分治法。

1、动态规划。求最值问题一般可以考虑动态规划的方法。d[i]表示子数组nums[k, i]的最大值,其中k>=0并且k<i。其递推公式为:

d[i] = nums[i], i==0 或者 d[i-1]<0
d[i] = nums[i] + d[i-1], 其他

然后返回d[]数组的最大值即可。这种方法的空间复杂度为O(n),其实可以优化成O(1)的空间复杂度。时间复杂度为O(n)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int len = nums.size();
        if(len<1){
            return 0;
        }
        int d[len];
        d[0]=nums[0];
        int maxSum=nums[0];
        
        for(int i=1; i<len; i++){
            if(d[i-1]>0){
                d[i]=nums[i]+d[i-1];
            }else{
                d[i]=nums[i];
            }
            maxSum = max(d[i], maxSum); 
        }
        
        return maxSum;
    }
};

2、分治法。这种方法非常巧妙。对于一个数组nums[left, right]来说,nums[mid]是其中间元素。最大值子数组的分布无非三种情况:

(1)最大值子数组在mid前面

(2)最大值子数组在mid后边

(3)最大值子数组跨过mid

对于(1)(2),可以直接用递归来求得,对于(3),我们以mid向两边延伸找到最大的和。然后返回三种情况最大的一项即可。

空间复杂度为O(1),时间复杂度为O(n)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        return maxSub(nums, 0, nums.size() - 1);
    }
    
    int maxSub(vector<int>& nums, int left, int right){
        if(left>right){
            return INT_MIN;
        }
        int mid = (left + right) / 2;
        int lMax = maxSub(nums, left, mid - 1);
        int rMax = maxSub(nums, mid + 1, right);
        int sum = 0;
        int lMaxSub = 0;
        for(int i=mid - 1; i>=left; i--){
            sum += nums[i];
            lMaxSub = max(sum, lMaxSub);
        }
        int rMaxSub = 0;
        sum = 0;
        for(int i=mid + 1; i<=right; i++){
            sum += nums[i];
            rMaxSub = max(sum, rMaxSub);
        }
        return max(max(lMax, rMax), lMaxSub + rMaxSub + nums[mid]);
    }
};


0 条评论

    发表评论

    电子邮件地址不会被公开。 必填项已用 * 标注