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ABSTRACT
There are a prohibitively large number of floating-point time se-

ries data generated at an unprecedentedly high rate. An efficient,

compact and lossless compression for time series data is of great

importance for a wide range of scenarios. Most existing lossless

floating-point compression methods are based on the XOR opera-

tion, but they do not fully exploit the trailing zeros, which usually

results in an unsatisfactory compression ratio. This paper proposes

an Erasing-based Lossless Floating-point compression algorithm,

i.e., Elf. The main idea of Elf is to erase the last few bits (i.e., set them

to zero) of floating-point values, so the XORed values are supposed

to contain many trailing zeros. The challenges of the erasing-based

method are three-fold. First, how to quickly determine the erased

bits? Second, how to losslessly recover the original data from the

erased ones? Third, how to compactly encode the erased data?

Through rigorous mathematical analysis, Elf can directly determine

the erased bits and restore the original values without losing any

precision. To further improve the compression ratio, we propose a

novel encoding strategy for the XORed values with many trailing

zeros. Elf works in a streaming fashion. It takes only O(𝑁 ) (where
𝑁 is the length of a time series) in time and O(1) in space, and

achieves a notable compression ratio with a theoretical guaran-

tee. Extensive experiments using 22 datasets show the powerful

performance of Elf compared with 9 advanced competitors.
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1 INTRODUCTION
The advance of sensing devices and Internet of Things [33, 45] has

brought about the explosion of time series data. A significant por-

tion of time series data are floating-point values produced at an un-

precedentedly high rate in a streaming fashion. For example, there

are over ten thousand sensors in a 600,000-kilowatt medium-sized

thermal power generating unit, which produce tens of thousands
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Figure 1: Motivation.

of real-time monitoring floating-point records per second [52, 53].

Additionally, the sensors on a Boeing 787 can generate up to half

a terabyte of data per flight [23]. If these huge floating-point time

series data (abbr. time series or time series data in the following) are

transmitted and stored in their original format, it would take up a

lot of network bandwidth and storage space, which not only causes

expensive overhead, but also reduces the system efficiency [30, 31]

and further affects the usability of some critical applications [53].

One of the best ways is to compress the time series data be-

fore transmission and storage. However, it is challenging for the

compression of floating-point data, because they have a rather com-

plex underlying format [26]. General compression algorithms such

as LZ4 [19] and Xz [12] do not exploit the intrinsic characteristics

(e.g., time ordering) of time-series data, although they could achieve

good compression ratio, but they are prohibitively time-consuming.

Moreover, most of them run in a batch mode, so they cannot be

applied directly to streaming time series data. There are two cate-

gories of compression methods specifically for floating-point time

series data, i.e., lossy compression algorithms and lossless compres-

sion algorithms. The former [27, 35–38, 54, 55] would lose some

information, and thus it is not suitable for scientific calculation,

data management [22, 29, 32, 50, 52] or other critical scenarios [53].

Imagine the scenes of thermal power generation [53] and flight [23],

any error could result in disastrous consequences. To this end, loss-

less floating-point time series compression has attracted extensive

interest for decades. One representative lossless algorithm is based

on the XOR operation. As shown in Figure 1(a), given a time se-

ries of double-precision floating-point values, suppose the current

value and its previous one are 3.17 and 3.25, respectively. If not

compressed, each value will occupy 64 bits in its underlying stor-

age (detailed in Section 2.2). When compressing, the XOR-based

compression algorithm performs an XOR operation on 3.17 and

3.25, i.e., Δ = 3.17 ⊕ 3.25. When decompressing, it recovers 3.17
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(a) Intuition of Erasing-based Lossless Floating-Point Compression (Elf)
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Figure 2: Main Idea of Elf Compression.

through another XOR operation, i.e., 3.17 = Δ ⊕ 3.25. Because two

consecutive values in a time series tend to be similar, the underlying

representation of Δ is supposed to contain many leading zeros
(and maybe many trailing zeros). Therefore, we can record Δ by

storing the center bits along with the numbers of leading zeros

and trailing zeros, which usually takes up less than 64 bits.

Gorilla [46] and Chimp [34] are two state-of-the-art XOR-based

lossless floating-point compression methods. Gorilla assumes that

the XORed result of two consecutive floating-point values is likely

to have both many leading zeros and trailing zeros. However, the

XORed result actually has very few trailing zeros in most cases. As

shown in Figure 1(b), if we perform an XOR operation on each value

with its previous one (just as Gorilla and Chimp did), there are as

many as 95% XORed results containing nomore than 5 trailing zeros.

Instead of using the exactly previous one value, Chimp128 [34] se-

lects from the previous 128 values the one that produces an XORed

result with themost trailing zeros. As a result, Chimp128 can achieve

a significant improvement in terms of compression ratio. The les-

son we can learn from Chimp128 is that, increasing the number of

trailing zeros of the XORed results plays a significant role in im-

proving the compression ratio for time series. However, as shown

in Figure 1(b), when we investigate the trailing zeros’ distribution

of the XORed results produced by Chimp128, there are still up to

60% of them having no more than 5 trailing zeros.

This paper proposes an Erasing-based Lossless Floating-point

compression algorithm, i.e., Elf. The intuition of Elf is simple: if we

erase last few bits (i.e., set them to zero) of the floating-point values,

we can obtain an XORed result with a large number of trailing zeros.

As shown in Figure 2(a), if we erase the last 44 bits of 3.17, we can

transform it to 3.1640625. By XORing 3.1640625 with the previous

value 3.25 (itself already has a lot of trailing zeros), we can get an

XORed result Δ′, which contains as many as 44 trailing zeros (only

2 before erasing as shown in Figure 1(a)).

There are three challenges for Elf. First, how to quickly determine

the erased bits? Since there are a prohibitively large number of time

series data generated at an unprecedented speed, it requires the

erasing step to be as fast as possible. Second, how to losslessly

restore the original floating-point data? This paper aims at lossless

compression, but the erasing step would introduce some precision

loss. It needs a restoring step to recover the original values from the

erased ones. Third, how to compactly compress the erased floating

point data? Since the distribution of trailing zeros has changed, it

calls for a new XOR-based compressor for the erased values.

Figure 2(a) shows the main idea of Elf. For this example, dur-

ing the compressing process, we find a small value 𝛿 satisfying

0 < 𝛿 < 0.01 to erase the bits of 3.17 as many as possible. Therefore,

we can obtain an erased value 3.1640625 = 3.17− 𝛿 , and encode the
XORed result Δ′ = 3.1640624 ⊕ 3.25 using few bits. During the de-

compressing process, sincewe know 3.1640624 = Δ′⊕3.25 = 3.17−𝛿
and 0 < 𝛿 < 0.01, we can losslessly recover 3.17 from Δ′ and 3.25

(i.e., 3.1640625 + 0.01 = 3.17). This paper proposes a mathematical

method to find 𝛿 in a time complexity of O(1). Furthermore, we

propose a novel XOR-based compressor to encode the XORed re-

sults containing many trailing zeros. As shown in Figure 2(b), Elf
consists of Compressor and Decompressor, and works in a stream-

ing fashion. In Elf Compressor, the original floating-point values 𝑣𝑖
flow into Elf Eraser and are transformed into 𝑣 ′

𝑖
with many trailing

zeros. Each 𝑣 ′
𝑖
(except for 𝑣 ′

1
) is XORed with its previous value 𝑣 ′

𝑖−1
.

The XORed result Δ′
𝑖
= 𝑣 ′

𝑖
⊕𝑣 ′

𝑖−1
is finally encoded elaborately in Elf

XOR𝑐𝑚𝑝 . In Elf Decompressor, each Δ′
𝑖
(except for Δ′

1
) is streamed

into ELf XOR𝑑𝑐𝑚𝑝 and then XORed with 𝑣 ′
𝑖−1

. Each 𝑣 ′
𝑖
= Δ′

𝑖
⊕ 𝑣 ′

𝑖−1

is finally fed into Elf Restorer to get the original value 𝑣𝑖 .

To the best of our knowledge, this is the first proposal for loss-

less floating-point compression based on the erasing strategy. In

particular, we make the following contributions:

(1) We propose an erasing-based lossless floating-point compres-

sion algorithm named Elf. Elf can greatly increase the number of

trailing zeros in XORed results by erasing the last few bits, which

enhances the compression ratio with a theoretical guarantee.

(2) Through rigorous theoretical analysis, we can quickly deter-

mine the erased bits, and recover the original floating-point values

without any precision loss. Elf takes only O(𝑁 ) in time (where 𝑁

is the length of a time series) and O(1) in space.

(3) We also propose an elaborated encoding strategy for the

XORed results with many trailing zeros, which further improves

the compression performance.

(4) We compare Elfwith 9 state-of-the-art competitors (including

4 floating-point compression algorithms and 5 general compression

algorithms) based on 22 datasets. The results show that Elf has the
best compression ratio among all floating-point compression algo-

rithms in most cases (achieve an average relative improvement of

12.4% over Chimp128 and 43.9% over Gorilla). Elf even outperforms

most general compression algorithms, and achieves similar perfor-

mance to the best general one (i.e., Xz) in terms of compression

ratio. However, Elf takes only about 4.86% compression time and

13.17% decompression time of Xz.

In the rest of this paper, we give the preliminaries in Section 2. In

Section 3, we present the details of Eraser and Restorer. In Section 4,

we elaborate on XOR𝑐𝑚𝑝 and XOR𝑑𝑐𝑚𝑝 . We give some analysis

and discussion in Section 5. The experimental results are shown in

Section 6, followed by the related works in Section 7. We conclude

this paper with future works in Section 8.



Table 1: Symbols and Their Meanings

Symbols Meanings
𝑇𝑆 = ⟨(𝑡1, 𝑣1), (𝑡2, 𝑣2), ...⟩ Floating-point time series, where 𝑡𝑖 is a timestamp and 𝑣𝑖 is a floating-point value

𝑣 , 𝑣 ′ Original floating-point value, erased floating-point value with long trailing zeros

𝐷𝐹 (𝑣) = ±(𝑑ℎ−1
𝑑ℎ−2

...𝑑0 .𝑑−1𝑑−2 ...𝑑𝑙 )10 Decimal format of 𝑣 , where 𝑑𝑖 ∈ {1, 2, ..., 9}. “+” is usually omitted if 𝑣 > 0

𝐵𝐹 (𝑣) = ±(𝑏 ¯ℎ−1
𝑏 ¯ℎ−2

...𝑏0 .𝑏−1𝑏−2 ...𝑏¯𝑙 )2 Binary format of 𝑣 , where 𝑏𝑖 ∈ {1, 2}. “+” is usually omitted if 𝑣 > 0

𝐷𝑃 (𝑣), 𝐷𝑆 (𝑣), 𝑆𝑃 (𝑣) Decimal place count, decimal significand count, start decimal significand position of 𝑣

𝑠 , ®𝒆 = ⟨𝑒1, 𝑒2, ..., 𝑒11⟩, ®𝒎 = ⟨𝑚1,𝑚2, ...,𝑚52⟩ Sign bit, exponent bits, mantissa bits under IEEE 754 format, where 𝑠, 𝑒𝑖 ,𝑚 𝑗 ∈ {0, 1}
𝑒 , 𝛼 , 𝛽 , 𝛽∗ Decimal value of ®𝒆, alias of 𝐷𝑃 (𝑣), alias of 𝐷𝑆 (𝑣), modified 𝛽

2 PRELIMINARIES
This section first gives some basic definitions, and then introduces

the double-precision floating-point format of IEEE 754 Standard [26].

Table 1 lists the symbols used frequently throughout this paper.

2.1 Definitions
Definition 1. Floating-Point Time Series. A floating-point

time series 𝑇𝑆 = ⟨(𝑡1, 𝑣1), (𝑡2, 𝑣2), ...⟩ is a sequence of pairs ordered
by the timestamps in an ascending order, where each pair (𝑡𝑖 , 𝑣𝑖 )
represents that the floating-point value 𝑣𝑖 is recorded in timestamp 𝑡𝑖 .

To compress floating-point time series compactly, one of the

best ways is to compress the timestamps and floating-point values

separately [15, 34, 46]. For the timestamp compression, existing

methods such as delta encoding and delta-of-delta encoding [46]

can achieve rather good performance, but for the floating-point

compression, there is still much room for improvement. To this

end, this paper primarily focuses on the compression for floating-

point values, particularly for double-precision floating-point values

(abbr. double values) in time series. Single-precision floating-point

compression can be easily extended from our proposed method.

Definition 2. Decimal Format and Binary Format. The deci-
mal format of 𝑣 is 𝐷𝐹 (𝑣) = ±(𝑑ℎ−1

𝑑ℎ−2
...𝑑0 .𝑑−1𝑑−2 ...𝑑𝑙 )10, where

𝑑𝑖 ∈ {0, 1, ..., 9} for 𝑙 ≤ 𝑖 ≤ ℎ − 1, 𝑑ℎ−1
≠ 0 unless ℎ = 1, and 𝑑𝑙 ≠ 0

unless 𝑙 = −1. That is, 𝐷𝐹 (𝑣) would not start with “0” except that
ℎ = 1, and would not end with “0” except that 𝑙 = −1. Similarly, the
binary format of 𝑣 is 𝐵𝐹 (𝑣) = ±(𝑏 ¯ℎ−1

𝑏 ¯ℎ−2
...𝑏0 .𝑏−1𝑏−2 ...𝑏¯𝑙 )2, where

𝑏 𝑗 ∈ {0, 1} for ¯𝑙 ≤ 𝑗 ≤ ¯ℎ − 1. We have the following relation:

𝑣 = ±
ℎ−1∑︁
𝑖=𝑙

𝑑𝑖 × 10
𝑖 = ±

¯ℎ−1∑︁
𝑗=¯𝑙

𝑏 𝑗 × 2
𝑗

(1)

Here, “±” (which means “+” or “−”) is the sign of 𝑣 . If 𝑣 ≥ 0, “+” is
usually omitted. For example, 𝐷𝐹 (0) = (0.0)10, 𝐷𝐹 (5.20) = (5.2)10,

and 𝐵𝐹 (−3.125) = −(11.001)2.
Definition 3. Decimal Place Count, Decimal Significand

Count and Start Decimal Significand Position. Given 𝑣 with its
decimal format 𝐷𝐹 (𝑣) = ±(𝑑ℎ−1

𝑑ℎ−2
...𝑑0 .𝑑−1𝑑−2 ...𝑑𝑙 )10, 𝐷𝑃 (𝑣) =

|𝑙 | is called its decimal place count. If for all 𝑙 < 𝑛 ≤ 𝑖 ≤ ℎ − 1,
𝑑𝑖 = 0 but 𝑑𝑛−1 ≠ 0 (i.e., 𝑑𝑛−1 is the first digit that is not equal to 0),
𝑆𝑃 (𝑣) = 𝑛 − 1 is called the start decimal significand position 1, and
𝐷𝑆 (𝑣) = 𝑛 − 𝑙 = 𝑆𝑃 (𝑣) + 1 − 𝑙 is called the decimal significand count.
For the case of 𝑣 = 0, we let 𝐷𝑆 (𝑣) = 0 and 𝑆𝑃 (𝑣) = 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 .
1
We have 𝑆𝑃 (𝑣) = ⌊𝑙𝑜𝑔10 |𝑣 | ⌋.

Sign (1 bit)

Exponent (11 bits)

Mantissa (52 bits)

s e1 e2 e3 e11 m1 m2 m3 m4 m52… 

More Significant Less Significant

… 

Figure 3: Double-Precision Floating-Point Format.

For example, 𝐷𝑃 (3.14) = 2, 𝐷𝑆 (3.14) = 3, and 𝑆𝑃 (3.14) = 0;

𝐷𝑃 (−0.0314) = 4, 𝐷𝑆 (−0.0314) = 3, and 𝑆𝑃 (−0.0314) = −2;

𝐷𝑃 (314.0) = 1, 𝐷𝑆 (314.0) = 4, and 𝑆𝑃 (314.0) = 2.

2.2 IEEE 754 Floating-Point Format
In accordance with IEEE 754 Standard [26], a double value 𝑣 is

stored with 64 binary bits , where 1 bit is for the sign 𝑠 , 11 bits

for the exponent ®𝒆 = ⟨𝑒1, 𝑒2, ..., 𝑒11⟩, and 52 bits for the mantissa

®𝒎 = ⟨𝑚1,𝑚2, ...,𝑚52⟩, as shown in Figure 3. When 𝑣 is positive,

𝑠 = 0, otherwise 𝑠 = 1. According to the values of ®𝒆 and ®𝒎, a double

value 𝑣 can be categorized into two main types: normal numbers
and special numbers. As normal numbers are the most cases of

time series, this paper mainly describes the proposed algorithm for

normal numbers. However, our proposed algorithm can be easily

extended to special numbers, which will be discussed in Section 5.4.

If 𝑣 is a normal number (or a normal), its value satisfies:

𝑣 = (−1)𝑠 × 2
𝑒−1023 × (1.𝑚1𝑚2 ...𝑚52)2

= (−1)𝑠 × 2
𝑒−1023 × (1 +

52∑︁
𝑖=1

𝑚𝑖 × 2
−𝑖 )

(2)

where 𝑒 is the decimal value of ®𝒆 2
, i.e., 𝑒 =

∑
11

𝑖=1
𝑒𝑖 × 2

11−𝑖
. If let

𝑚0 = 1 and 𝐵𝐹 (𝑣) = (−1)𝑠 (𝑏 ¯ℎ−1
𝑏 ¯ℎ−2

...𝑏0 .𝑏−1𝑏−2 ...𝑏¯𝑙 )2, we have:
𝑏−𝑖 =𝑚𝑖+𝑒−1023, 𝑖 > 0 (3)

As shown in Figure 3, in the mantissa ®𝒎 = ⟨𝑚1,𝑚2, ...,𝑚52⟩ of a
double value 𝑣 ,𝑚𝑖 is more significant than𝑚 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 52,

since𝑚𝑖 contributes more to the value of 𝑣 than𝑚 𝑗 .

3 ELF ERASER AND RESTORER
In this section, we introduce Elf Eraser and Restorer since they are

strongly correlated.

3.1 Elf Eraser
The main idea of Elf compression is to erase some less significant

mantissa bits (i.e., set them to zeros) of a double value 𝑣 . As a result, 𝑣

itself and the XORed result of 𝑣 with its previous value are expected

to have many trailing zeros. Note that 𝑣 and its opposite number

2
We also have 𝑒 = ⌊𝑙𝑜𝑔2 |𝑣 | ⌋ + 1023.



0 10000000000 1001010111000010100011110101110000101000111101011100
3.17

0 10000000000 1001010100000000000000000000000000000000000000000000
3.1640625

0 10000000000 1001000000000000000000000000000000000000000000000000
3.125

0 10000000000 1001010111000010100011100000000000000000000000000000
3.169999837875366

Figure 4: Examples of Mantissa Prefix Number.

−𝑣 have the same double-precision floating-point formats except

the different values of their signs. That is to say, the compression

process for −𝑣 can be converted into that for 𝑣 if we reverse its

sign bit only, and vice versa. To this end, in the rest of the paper,

if not specified, we assume 𝑣 to be positive for the convenience

of description. Before introducing the details of Elf Eraser, we first
give the definition of mantissa prefix number.

Definition 4. Mantissa Prefix Number. Given a double value 𝑣
with ®𝒎 = ⟨𝑚1,𝑚2, ...,𝑚52⟩, the double value 𝑣 ′ with ®𝒎′ = ⟨𝑚′

1
,𝑚′

2
, ...,

𝑚′
52
⟩ is called the mantissa prefix number of 𝑣 if and only if there

exists a number 𝑛 ∈ {1, 2, ..., 51} such that𝑚′
𝑖
= 𝑚𝑖 for 1 ≤ 𝑖 ≤ 𝑛

and𝑚′
𝑗
= 0 for 𝑛 + 1 ≤ 𝑗 ≤ 52, denoted as 𝑣 ′ = 𝑀𝑃𝑁 (𝑣, 𝑛).

For example, as shown in Figure 4, we give four mantissa prefix

numbers of 3.17, i.e., 3.17 = 𝑀𝑃𝑁 (3.17, 50), 3.169999837875366 =

𝑀𝑃𝑁 (3.17, 23), 3.1640625 = 𝑀𝑃𝑁 (3.17, 8) and 3.125 = 𝑀𝑃𝑁 (3.17, 4).

3.1.1 Observation. Our proposed Elf compression algorithm is

based on the following observation: given a double value 𝑣 with

its decimal format 𝐷𝐹 (𝑣) = (𝑑ℎ−1
𝑑ℎ−2

...𝑑0 .𝑑−1𝑑−2 ...𝑑𝑙 )10, we can

find one of its mantissa prefix numbers 𝑣 ′ and a minor double value

𝛿 , 0 ≤ 𝛿 < 10
𝑙
, such that 𝑣 ′ = 𝑣 − 𝛿 . If we retain the information of

𝑣 ′ and 𝛿 , we can recover 𝑣 without losing any precision.

On one hand, there could be many mantissa prefix numbers.

Since we aim to maximize the number of trailing zeros of the XORed

results, we should select the optimal mantissa prefix number that

has the most trailing zeros. Considering the case of 𝑣 = 3.17 shown

in Figure 4, there are many satisfied pairs of (𝑣 ′, 𝛿), e.g., (3.17, 0),
(3.169999837875366, 0.000000162124634) and (3.1640625, 0.0059375).
As 3.1640625 has more trailing zeros than 3.169999837875366 and

3.17, the mantissa prefix number 3.1640625 is the most suitable 𝑣 ′.
On the other hand, we find it even unnecessary to figure out

and store 𝛿 . If 𝛿 ≠ 0 (we will talk about the case when 𝛿 = 0 in

Section 3.1.4) and the decimal place count 𝐷𝑃 (𝑣) is known, we
can easily recover 𝑣 from 𝑣 ′ losslessly. Suppose 𝛼 = 𝐷𝑃 (𝑣) and
𝐷𝐹 (𝑣 ′) = (𝑑ℎ′−1

𝑑ℎ′−2
...𝑑0 .𝑑−1𝑑−2 ...𝑑𝑙 ′ )10, we have

3
:

𝑣 = 𝐿𝑒𝑎𝑣𝑒𝑂𝑢𝑡 (𝑣 ′, 𝛼) + 10
−𝛼

(4)

where𝐿𝑒𝑎𝑣𝑒𝑂𝑢𝑡 (𝑣 ′, 𝛼) = (𝑑ℎ′−1
𝑑ℎ′−2

...𝑑0 .𝑑−1 ...𝑑−𝛼𝑑−(𝛼+1) ...𝑑𝑙 ′ )10

is the operation that leaves out the digits after 𝑑−𝛼 in 𝐷𝐹 (𝑣 ′). For
example, given 𝛼 = 𝐷𝑃 (3.17) = 2 and 𝑣 ′ = 3.1640625, we have

𝑣 = 𝐿𝑒𝑎𝑣𝑒𝑂𝑢𝑡 (𝑣 ′, 𝛼) + 10
−𝛼 = (3.1640625)10 + 10

−2 = 3.17.

With the observation above, in the process of compression, what

we should do is to find the most appropriate mantissa prefix number

𝑣 ′ of 𝑣 and record 𝛼 = 𝐷𝑃 (𝑣). During the decompression process,

we can recover 𝑣 losslessly with the help of 𝑣 ′ and 𝛼 according

to Equation (4). However, there are still two problems left to be

3
Equation (4) can be implemented by 𝑣 = 𝑅𝑜𝑢𝑛𝑑𝑈𝑝 (𝑣′, 𝛼 ) , where 𝑅𝑜𝑢𝑛𝑑𝑈𝑝 (𝑣′, 𝛼 )
is the operation to round 𝑣′ up to 𝛼 decimal places.

addressed. Problem I: How to find the best mantissa prefix number

𝑣 ′ of 𝑣 with the minimum efforts? Problem II: How to store the

decimal place count 𝛼 with the minimum storage cost?

3.1.2 Mantissa Prefix Number Search. To address Problem I, one

intuitive idea is to iteratively check all the mantissa prefix numbers

𝑣 ′ = 𝑀𝑃𝑁 (𝑣, 𝑖) until 𝛿 = 𝑣 − 𝑣 ′ is greater than 10
−𝛼

, where 𝑖 is

sequentially from 52 to 1. However, this intuitive idea is rather time-

consuming since we need to verify the mantissa prefix numbers

at most 52 times in the worst case. Although we can enhance the

efficiency through a binary search strategy [14], the computation

complexity O(𝑙𝑜𝑔252) is still high. To this end, we propose a novel

mantissa prefix number search method which only takes O(1).

Theorem 1. Given a double value 𝑣 with its decimal place count
𝐷𝑃 (𝑣) = 𝛼 and binary format𝐵𝐹 (𝑣) = (𝑏 ¯ℎ−1

𝑏 ¯ℎ−2
...𝑏0 .𝑏−1𝑏−2 ...𝑏¯𝑙 )2,

𝛿 = (0.0...0𝑏−(𝑓 (𝛼 )+1)𝑏−(𝑓 (𝛼 )+2) ...𝑏¯𝑙 )2 is smaller than 10
−𝛼 , where

𝑓 (𝛼) = ⌈|𝑙𝑜𝑔210
−𝛼 |⌉ = ⌈𝛼 × 𝑙𝑜𝑔210⌉.

Proof.

𝛿 =

|¯𝑙 |∑︁
𝑖=𝑓 (𝛼 )+1

𝑏−𝑖 × 2
−𝑖 ≤

|¯𝑙 |∑︁
𝑖=𝑓 (𝛼 )+1

2
−𝑖 <

+∞∑︁
𝑖=𝑓 (𝛼 )+1

2
−𝑖

= 2
−𝑓 (𝛼 ) = 2

−⌈𝛼×𝑙𝑜𝑔210⌉ ≤ 2
−𝛼×𝑙𝑜𝑔210

= (2𝑙𝑜𝑔210)−𝛼 = 10
−𝛼

□

Here, 𝑓 (𝛼) = ⌈|𝑙𝑜𝑔210
−𝛼 |⌉ means that the decimal value 10

−𝛼

requires exactly ⌈|𝑙𝑜𝑔210
−𝛼 |⌉ binary bits to represent. Suppose 𝛿

is obtained based on Theorem 1, 𝑣 − 𝛿 can be regarded as erasing

the bits after 𝑏−𝑓 (𝛼 ) in 𝑣 ’s binary format. Recall that for any 𝑏−𝑖
in 𝐵𝐹 (𝑣) where 𝑖 > 0, we can find a corresponding 𝑚𝑖+𝑒−1023

according to Equation (3). Consequently, 𝑣−𝛿 can be further deemed

as erasing the mantissa bits after𝑚𝑔 (𝛼 ) in 𝑣 ’s underlying floating-

point format, in which 𝑔(𝛼) is defined as:

𝑔(𝛼) = 𝑓 (𝛼) + 𝑒 − 1023 = ⌈𝛼 × 𝑙𝑜𝑔210⌉ + 𝑒 − 1023 (5)

where 𝛼 = 𝐷𝑃 (𝑣) and 𝑒 = (𝑒1𝑒2 ...𝑒11)2 =
∑

11

𝑖=1
𝑒𝑖 × 2

11−𝑖
.

As a result, we can directly calculate the best mantissa prefix

number 𝑣 ′ by simply erasing the mantissa bits after 𝑚𝑔 (𝛼 ) of 𝑣 ,
which takes only O(1).

3.1.3 Decimal Place Count Calculation. To solve Problem II, the

basic idea is to utilize ⌈𝑙𝑜𝑔2𝛼𝑚𝑎𝑥 ⌉ bits for 𝛼 storage, where 𝛼𝑚𝑎𝑥 is

the possible maximum value of a decimal place count. According

to [26], the minimum value of the double-precision floating-point

number is about 4.9 × 10
−324

, so 𝛼𝑚𝑎𝑥 = 324 and ⌈𝑙𝑜𝑔2𝛼𝑚𝑎𝑥 ⌉ = 9,

i.e., the basic method needs as many as 9 bits to store 𝛼 during the

compression process for each double value, which results in a large

storage cost and low compression ratio.

Given a double value 𝑣 with its decimal format𝐷𝐹 (𝑣) = (𝑑ℎ−1
𝑑ℎ−2

...𝑑0 .𝑑−1𝑑−2 ...𝑑𝑙 )10, we notice that its decimal place count 𝛼 =

𝐷𝑃 (𝑣) can be calculated by the decimal significand count 𝛽 = 𝐷𝑆 (𝑣).
Since the decimal significand count 𝛽 of a double value would not

be greater than 17 under the IEEE 754 Standard [26, 34], it requires

much fewer bits to store 𝛽 . According to Definition 3, we have

𝛼 = 𝐷𝑃 (𝑣) = |𝑙 | = −𝑙 and 𝛽 = 𝐷𝑆 (𝑣) = 𝑆𝑃 (𝑣) + 1 − 𝑙 , so we have:

𝛼 = 𝛽 − (𝑆𝑃 (𝑣) + 1) (6)

Next, we discuss how to get 𝑆𝑃 (𝑣) without even knowing 𝑣 .



v' = 0.0625, δ = v - v' = 0.0375v = 0.1, α = DP(v) = 1, g(α) = 0, β = DS(v) = 1

0 01111111011 1001100110011001100110011001100110011001100110011010 0 01111111011 0000000000000000000000000000000000000000000000000000

(a) Example of Erasing for v = 10-i, i > 0. We Set β* = 0

v' = 3.1415926535897913, δ = v - v' = 0.0000000000000007v = 3.141592653589792, α = DP(v) = 15, g(α) = 51, β = DS(v) =16

0 10000000000 1001001000011111101101010100010001000010110100010101 0 10000000000 1001001000011111101101010100010001000010110100010100

(b) Example of Invalid Erasing When β ≥ 16. We Do Not Perform Elf Erasing

v' = 0.75, δ = v - v' = 0v = 0.75, α = DP(v) = 2, g(α) = 6, β = DS(v) = 2

0 01111111110 1000000000000000000000000000000000000000000000000000 0 01111111110 1000000000000000000000000000000000000000000000000000

(c) Example of Invalid Erasing When δ = 0. We Do Not Perform Elf Erasing

Figure 5: Corner Cases of Elf Eraser.

DF(v): (dh-1  dh-2  ...  d0  . d-1  d-2  ... d-(α-1)   d-α)10

DF(δ): (     0 .  0    0   ...  0        0        d-(α+1)  d-(α+2)...)10-

DF(v'): (d'h-1 d'h-2 ... d'0 . d'-1 d'-2 ... d'-(α-1) (d-α-1) d'-(α+1) d'-(α+2)...)10

Figure 6: Subtraction in Vertical Form.

Theorem 2. Given a double value 𝑣 and its best mantissa prefix
number 𝑣 ′, if 𝑣 ≠ 10

−𝑖 , 𝑖 > 0, then 𝑆𝑃 (𝑣) = 𝑆𝑃 (𝑣 ′).

Proof. Suppose 𝛼 = 𝐷𝑃 (𝑣) and 𝑣 ′ = 𝑣 −𝛿 , where 0 ≤ 𝛿 < 10
−𝛼

.

If 𝛿 = 0, i.e., 𝑣 = 𝑣 ′, 𝐷𝐹 (𝑣) and 𝐷𝐹 (𝑣 ′) undoubtedly have the

same start decimal significand position.

If𝛿 ≠ 0, we let𝐷𝐹 (𝑣) = (𝑑ℎ−1
𝑑ℎ−2

...𝑑0 .𝑑−1𝑑−2 ...𝑑−𝛼 )10,𝐷𝐹 (𝛿) =
(0.0...0𝑑−(𝛼+1)𝑑−(𝛼+2) ...)10 and𝐷𝐹 (𝑣 ′) = (𝑑′ℎ−1

𝑑′
ℎ−2

...𝑑′
0
.𝑑′−1

𝑑′−2
...

𝑑′−𝛼 ...)10. Figure 6 shows the vertical form of the calculation for

𝑣 ′ = 𝑣 − 𝛿 , from which we can clearly conclude that 𝑑𝑖 = 𝑑′
𝑖
for

−(𝛼 − 1) ≤ 𝑖 ≤ ℎ − 1, and that 𝑑′−𝛼 = 𝑑−𝛼 − 1. There are two cases:

𝑆𝑃 (𝑣) = −𝛼 and 𝑆𝑃 (𝑣) ≠ −𝛼 . For the former, we have 𝑑𝑖 = 0 for

−(𝛼 − 1) ≤ 𝑖 ≤ ℎ − 1 and 𝑑−𝛼 ≠ 0 according to the definition of the

start decimal significand position. Since 𝑣 ≠ 10
−𝑖
, i.e., 𝑑−𝛼 ≠ 1, we

have 𝑑′−𝛼 = 𝑑−𝛼 −1 ≠ 0, i.e., 𝑆𝑃 (𝑣 ′) = −𝛼 = 𝑆𝑃 (𝑣). For the latter, as
𝑣 ≠ 0 and 𝑆𝑃 (𝑣) ≠ −𝛼 , there must exist 𝑗 ∈ {ℎ−1, ℎ−2, ...,−(𝛼−1)}
such that 𝑑 𝑗 ≠ 0. Suppose 𝑑 𝑗∗ is the first one for 𝑑 𝑗 ≠ 0, i.e.,

𝑆𝑃 (𝑣) = 𝑗∗. Because 𝑑′
𝑖
= 𝑑𝑖 for −(𝛼 − 1) ≤ 𝑖 ≤ ℎ − 1, 𝑑′

𝑗∗ is also the

first one for 𝑑′
𝑗
≠ 0, i.e., 𝑆𝑃 (𝑣 ′) = 𝑗∗ = 𝑆𝑃 (𝑣). □

When 𝑣 = 10
−𝑖
, 𝑖 > 0, Theorem 2 does not hold. Figure 5(a) gives

an example of 𝑣 = 0.1 with 𝑆𝑃 (𝑣) = −1. If performing the erasing

operation on 𝑣 , we get 𝑣 ′ = 0.0625 with 𝑆𝑃 (𝑣 ′) = −2.

Theorem 3. Given a double value 𝑣 = 10
−𝑖 , 𝑖 > 0, and its best

mantissa prefix number 𝑣 ′, we have 𝑆𝑃 (𝑣) = 𝑆𝑃 (𝑣 ′) + 1.

Proof. Suppose 𝛼 = 𝐷𝑃 (𝑣), we have 𝛼 > 0 and 𝑣 = 10
−𝛼

. The

exponent value of the 𝑣 ’s underlying storage is 𝑒 = ⌊𝑙𝑜𝑔2 |𝑣 |⌋ +
1023 = ⌊−𝛼 × 𝑙𝑜𝑔210⌋ + 1023. Based on Equation (5), we have

𝑔(𝛼) = ⌈𝛼 ×𝑙𝑜𝑔210⌉ + ⌊−𝛼 ×𝑙𝑜𝑔210⌋ = 0. That is, we will erase all of

themantissa bits, so 𝑣 ′ = (−1)𝑠×2
⌊𝑙𝑜𝑔2 |𝑣 | ⌋ = 2

⌊𝑙𝑜𝑔210
−𝛼 ⌋

. Let 𝑣÷𝑣 ′ =
10
−𝛼 ÷ 2

⌊𝑙𝑜𝑔210
−𝛼 ⌋ = 2

𝑙𝑜𝑔210
−𝛼 ÷ 2

⌊𝑙𝑜𝑔210
−𝛼 ⌋ = 2

𝑙𝑜𝑔210
−𝛼−⌊𝑙𝑜𝑔210

−𝛼 ⌋
.

Since 𝑙𝑜𝑔210
−𝛼−⌊𝑙𝑜𝑔210

−𝛼 ⌋ ∈ (0, 1), we have 𝑣÷𝑣 ′ ∈ (1, 2). Further
𝑣 ′ ∈ (0.5 × 10

−𝛼 , 10
−𝛼 ). Consequently, 𝑆𝑃 (𝑣) = 𝑆𝑃 (𝑣 ′) + 1. □

According to Theorem 2 and Theorem 3, Equation (6) can be

rewritten as:

𝛼 =

{
𝛽 − (𝑆𝑃 (𝑣 ′) + 1) 𝑣 ≠ 10

−𝑖 , 𝑖 > 0

𝛽 − (𝑆𝑃 (𝑣 ′) + 2) 𝑣 = 10
−𝑖 , 𝑖 > 0

(7)

For any normal number 𝑣 , its decimal significand count 𝛽 will

not be zero. Besides, if we know 𝑣 = 10
𝑆𝑃 (𝑣)

, 𝑆𝑃 (𝑣) < 0, we can

easily get 𝑣 from 𝑣 ′ by the following equation:

𝑣 = 10
𝑆𝑃 (𝑣′ )+1

(8)

To this end, we can record a modified decimal significand count 𝛽∗

for the calculation of 𝛼 .

𝛽∗ = 𝐷𝑆∗ (𝑣) =
{

0 𝑣 = 10
−𝑖 , 𝑖 > 0

𝛽 𝑜𝑡ℎ𝑒𝑟𝑠
(9)

Although there are 18 possible different values of 𝛽∗, i.e., 𝛽∗ ∈
{0, 1, 2, ..., 17}, we do not consider the situations when 𝛽∗ = 16 or 17,

because for these two situations, we can only erase a small number

of bits but need more bits to record 𝛽∗, which leads to a negative

gain (more details will be discussed in Section 5.1). For example,

as shown in Figure 5(b), given 𝑣 = 3.141592653589792 with 𝛽 = 16,

we can erase one bit only. In our implementation, we leverage 4

bits to record 𝛽∗ for 0 ≤ 𝛽∗ ≤ 15. To ensure a positive gain, when

52 − 𝑔(𝛼) ≤ 4, we do not perform the erasing operation.

3.1.4 When 𝛿 is Zero. As shown in Figure 5(c), given 𝑣 = 0.75, we

get 𝑣 ′ = 𝑣 and 𝛿 = 0. In this situation, we cannot recover 𝑣 from 𝑣 ′

according to Equation (4). In fact, 𝛿 = 0 indicates that 𝑣 itself has

long trailing zeros. Therefore, once 𝛿 = 0, we will keep 𝑣 as it is.

3.1.5 Summary of Elf Eraser. We utilize one bit as a flag to indicate

whether we have erased 𝑣 or not. As shown in Algorithm 1, Elf
Eraser takes as input a double value 𝑣 and an output stream 𝑜𝑢𝑡 .

We first calculate the decimal place count 𝛼 andmodified decimal

significand count 𝛽∗ based on Equation (9), and get 𝛿 by extracting

the least 52 − 𝑔(𝛼) significant mantissa bits of 𝑣 (Lines 1-2).

If the three conditions (i.e., 𝛽∗ < 16, 𝛿 ≠ 0 and 52 − 𝑔(𝛼) > 4)

hold simultaneously, the output stream 𝑜𝑢𝑡 writes one bit of “1”

to indicate that 𝑣 should be transformed, followed by 4 bits of 𝛽∗

for the recovery of 𝑣 . We get 𝑣 ′ by erasing the least 52 − 𝑔(𝛼)
significant mantissa bits of 𝑣 (Lines 4-5). Otherwise, the output

stream 𝑜𝑢𝑡 writes one bit of “0”, and 𝑣 ′ is assigned 𝑣 without any
modification (Line 7).

Finally, the obtained 𝑣 ′ is passed to an XOR-based compressor

together with 𝑜𝑢𝑡 for further compression (Line 8).

3.2 Elf Restorer
Elf Restorer is an inverse process of Elf Eraser. Algorithm 2 depicts

the pseudo-code of 𝐸𝑙 𝑓 Restorer, which takes in an input stream 𝑖𝑛.



xort = v't⊕v't-1

write '0' (1 bit) write '1' (1 bit)

xort = 0 xort ≠ 0

others

write

 '0' (1 bit)

center bits

write

 '1' (1 bit)

#lead (5 bits)

#center (6 bits)

center bits

xort = v't⊕v't-1

write '0' (1 bit) write '1' (1 bit)

xort = 0 xort ≠ 0

write

 '1' (1 bit)

#lead (3 bits)

#center (6 bits)

center bits

(a) Gorilla Compressor (b) Optimizing Leading Code (c) Optimizing Center Code

others

write

 '0' (1 bit)

center bits

xort = v't⊕v't-1

write '0' (1 bit) write '1' (1 bit)

xort = 0 xort ≠ 0

write

 '10' (2 bits)

#lead (3 bits)

#center (4 bits)

center bits

C2

write

 '0' (1 bit)

center bits

write

 '11' (2 bits)

#lead (3 bits)

#center (6 bits)

center bits

write

 '0' (1 bit)

#lead (3 bits)

#center (4 bits)

center bits

write

 '0' (1 bit)

center bits

write '1' (1 bit)

write

 '1' (1 bit)

#lead (3 bits)

#center (6 bits)

center bits

center≤16 center>16

xort≠0 and not C2

xort = v't⊕v't-1

write '01' (2 bits)

xort = 0

write '0' (1 bit)

xort≠0 and C2

C1: leadt≥leadt-1 

and trailt≥trailt-1

C1

C2: leadt = leadt-1 

and trailt≥trailt-1

C2

C3: not C2 and 
center≤16

C3
others

C2: leadt = leadt-1 

and trailt≥trailt-1

(d) Reassigning Flag Code

Figure 7: Evolutionary Process of Elf XOR𝑐𝑚𝑝 for 𝑣 ′𝑡 (𝑡 ≠ 1).

Algorithm 1: 𝐸𝑙 𝑓 𝐸𝑟𝑎𝑠𝑒𝑟 (𝑣, 𝑜𝑢𝑡)
1 𝛼 ← 𝐷𝑃 (𝑣), 𝛽∗ ← 𝐷𝑆∗ (𝑣) ; // Equation (9)

2 𝛿 ← ∼ (0xffffffffffffffffL << (52 − 𝑔 (𝛼 ) ) ) & 𝑣;

3 if 𝛽∗<16 and 𝛿 ≠ 0 and 52 − 𝑔 (𝛼 ) > 4 then // perform erasing
4 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒𝐵𝑖𝑡 (“1”) ;𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝛽∗, 4) ;
5 𝑣′ ← (0xffffffffffffffffL << (52 − 𝑔 (𝛼 ) ) ) & 𝑣;

6 else // do not perform erasing
7 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒𝐵𝑖𝑡 (“0”) ; 𝑣′ ← 𝑣;

8 𝑋𝑂𝑅𝑐𝑚𝑝 (𝑣′, 𝑜𝑢𝑡 ) ;

First, we read one bit from the input stream 𝑖𝑛 to get the modifica-

tion flag 𝑓 𝑙𝑎𝑔 (Line 1), which has two cases:

(1) If 𝑓 𝑙𝑎𝑔 equals to 0, it means that we have not modified the

original value, so we get a value from an XOR-based decompressor

and assign it to 𝑣 directly (Line 3).

(2) Otherwise, we read 4 bits from the input stream to get the

modified decimal significand count 𝛽∗, and then get a value 𝑣 ′ from
an XOR-based decompressor. If 𝛽∗ equals to 0, 𝑣 has a format of

10
−𝑖
, where −𝑖 = 𝑆𝑃 (𝑣 ′) + 1 (Line 7). If 𝛽∗ ≠ 0, we can recover 𝑣

from 𝛽∗ and 𝑣 ′ based on Equation (7) and Equation (4) (Lines 9-10).

Finally, the recovered 𝑣 is returned (Line 11).

4 ELF XOR𝑐𝑚𝑝 AND XOR𝑑𝑐𝑚𝑝

Theoretically, any existing XOR-based compressor such as Go-

rilla [46] and Chimp [34] can be utilized in Elf. Since the erased
value 𝑣 ′ tends to contain long trailing zeros, to compress the time

series compactly, in this section, we propose a novel XOR-based

compressor and the corresponding decompressor.

4.1 Elf XOR𝑐𝑚𝑝

4.1.1 First Value Compression. Existing XOR-based compressors

store the first value 𝑣 ′
1
of a time series using 64 bits. However, after

being erased some insignificant mantissa bits, 𝑣 ′
1
tends to have a

large number of trailing zeros. As a result, we leverage ⌈𝑙𝑜𝑔265⌉ = 7

bits to record the number of trailing zeros 𝑡𝑟𝑎𝑖𝑙 of 𝑣 ′
1
(note that

𝑡𝑟𝑎𝑖𝑙 can be assigned a total of 65 values from 0 to 64), and store

𝑣 ′
1
’s non-trailing bits with 64− 𝑡𝑟𝑎𝑖𝑙 bits. In all, we utilize 71− 𝑡𝑟𝑎𝑖𝑙

bits to record the first value, which is usually less than 64 bits.

4.1.2 Other Values Compression. For each value 𝑣 ′𝑡 that 𝑡 > 1, we

store 𝑥𝑜𝑟𝑡 = 𝑣 ′𝑡 ⊕ 𝑣 ′𝑡−1
as most existing XOR-based compressors did.

Our proposed XOR-based compressor is extended from Gorilla [46]

and at the same time borrows some ideas from Chimp [34].

Algorithm 2: 𝐸𝑙 𝑓 𝑅𝑒𝑠𝑡𝑜𝑟𝑒𝑟 (𝑖𝑛)
1 𝑓 𝑙𝑎𝑔← 𝑖𝑛.𝑟𝑒𝑎𝑑 (1) ;
2 if 𝑓 𝑙𝑎𝑔 = 0 then // no restoration required
3 𝑣 ← 𝑋𝑂𝑅𝑑𝑐𝑚𝑝 (𝑖𝑛) ;
4 else // perform restoring
5 𝛽∗ ← 𝑖𝑛.𝑟𝑒𝑎𝑑 (4) ; 𝑣′ ← 𝑋𝑂𝑅𝑑𝑐𝑚𝑝 (𝑖𝑛) ;
6 if 𝛽∗ = 0 then
7 𝑣 ← 10

𝑆𝑃 (𝑣′ )+1
; // Equation (8)

8 else
9 𝛼 ← 𝛽∗ − (𝑆𝑃 (𝑣′ ) + 1) ; // Equation (7)

10 𝑣 ← 𝐿𝑒𝑎𝑣𝑒𝑂𝑢𝑡 (𝑣′, 𝛼 ) + 10
−𝛼

; // Equation (4)

11 return v;

Gorilla Compressor. As shown in Figure 7(a), Gorilla com-

pressor checks whether 𝑥𝑜𝑟𝑡 is equal to 0 or not. If 𝑥𝑜𝑟𝑡 = 0 (i.e.,

𝑣 ′𝑡 = 𝑣 ′
𝑡−1

), Gorilla writes one bit of “0”, and thus it can save many

bits without actually storing 𝑣 ′𝑡 . If 𝑥𝑜𝑟𝑡 ≠ 0, Gorilla writes one bit of

“1” and further checks whether the condition 𝐶1 is satisfied. Here

𝐶1 is “𝑙𝑒𝑎𝑑𝑡 ≥ 𝑙𝑒𝑎𝑑𝑡−1 and 𝑡𝑟𝑎𝑖𝑙𝑡 ≥ 𝑡𝑟𝑎𝑖𝑙𝑡−1”, meaning that the

leading zeros count and trailing zeros count of 𝑥𝑜𝑟𝑡 are greater

than or equal to those of 𝑥𝑜𝑟𝑡−1, respectively. If 𝐶1 does not hold,

after writing a bit of “1”, Gorilla stores the leading zeros count and

center bits count with 5 bits and 6 bits respectively, followed by

the actual center bits. Otherwise, 𝑥𝑜𝑟𝑡 shares the information of

leading zeros count and center bits count with 𝑥𝑜𝑟𝑡−1, which is

expected to save some bits.

Leading Code Optimization. Observing that the leading ze-

ros count of an XORed value is rarely more than 30 or less than 8,

Chimp [34] proposes to use only 𝑙𝑜𝑔28 = 3 bits to represent up to 24

leading zeros. In particular, Chimp leverages 8 exponentially decay-

ing steps (i.e., 0, 8, 12, 16, 18, 20, 22, 24) to approximately represent

the leading zeros count. If the actual leading zeros count is between

0 and 7, Chimp approximates it to be 0; if it is between 8 and 11,

Chimp regards it as 8; and so on. The condition of 𝐶1 is therefore

converted into 𝐶2, i.e., “𝑙𝑒𝑎𝑑𝑡 = 𝑙𝑒𝑎𝑑𝑡−1 and 𝑡𝑟𝑎𝑖𝑙𝑡 ≥ 𝑡𝑟𝑎𝑖𝑙𝑡−1”. By

applying this optimization to the Gorilla compressor, we can get a

compressor shown in Figure 7(b).

Center Code Optimization. Both 𝑣 ′𝑡 and 𝑣
′
𝑡−1

are supposed to

have many trailing zeros, which results in an XORed value with

long trailing zeros. Besides, 𝑣 ′𝑡 would not differentiate much from

𝑣 ′
𝑡−1

in most cases, contributing to long leading zeros in the XORed

value. That is, the XORed value tends to have a small number of



Algorithm 3: 𝐸𝑙 𝑓 𝑋𝑂𝑅𝑐𝑚𝑝 (𝑣 ′𝑡 , 𝑜𝑢𝑡)
1 if 𝑣′𝑡 is the first value then // compress the first value
2 𝑙𝑒𝑎𝑑𝑡 ←∞; 𝑡𝑟𝑎𝑖𝑙𝑡 ← 𝑛𝑢𝑚𝑂𝑓𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 (𝑣′𝑡 ) ;
3 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑡𝑟𝑎𝑖𝑙𝑡 , 7) ;
4 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑛𝑜𝑛𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔𝐵𝑖𝑡𝑠 (𝑣′𝑡 ), 64 − 𝑡𝑟𝑎𝑖𝑙𝑡 ) ;
5 else // compress other values
6 𝑥𝑜𝑟 ← 𝑣′𝑡 ⊕ 𝑣′

𝑡−1
;

7 if 𝑥𝑜𝑟 = 0 then // case 01 in Figure 7(d)
8 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒𝐵𝑖𝑡 (“01”) ;
9 𝑙𝑒𝑎𝑑𝑡 ← 𝑙𝑒𝑎𝑑𝑡−1; 𝑡𝑟𝑎𝑖𝑙𝑡 ← 𝑡𝑟𝑎𝑖𝑙𝑡−1;

10 else
11 𝑙𝑒𝑎𝑑𝑡 ← 𝑏𝑖𝑛𝑁𝑢𝑚𝑂𝑓 𝐿𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 (𝑥𝑜𝑟 ) ;
12 𝑡𝑟𝑎𝑖𝑙𝑡 ← 𝑛𝑢𝑚𝑂𝑓𝑇𝑟𝑎𝑖𝑙𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 (𝑥𝑜𝑟 ) ;
13 𝑐𝑒𝑛𝑡𝑒𝑟 ← 64 − 𝑙𝑒𝑎𝑑𝑡 − 𝑡𝑟𝑎𝑖𝑙𝑡 ;
14 if 𝑙𝑒𝑎𝑑𝑡 = 𝑙𝑒𝑎𝑑𝑡−1 and 𝑡𝑟𝑎𝑖𝑙𝑡 ≥ 𝑡𝑟𝑎𝑖𝑙𝑡−1 then
15 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒𝐵𝑖𝑡 (“00”) ; // case 00 in Figure 7(d)

16 else if 𝑐𝑒𝑛𝑡𝑒𝑟 ≤ 16 then // case 10 in Figure 7(d)
17 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒𝐵𝑖𝑡 (“10”) ;
18 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑙𝑒𝑎𝑑𝑡 , 3) ;𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑐𝑒𝑛𝑡𝑒𝑟, 4) ;
19 else // case 11 in Figure 7(d)
20 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒𝐵𝑖𝑡 (“11”) ;
21 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑙𝑒𝑎𝑑𝑡 , 3) ;𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑐𝑒𝑛𝑡𝑒𝑟, 6) ;
22 𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑐𝑒𝑛𝑡𝑒𝑟𝐵𝑖𝑡𝑠 (𝑣′𝑡 ), 𝑐𝑒𝑛𝑡𝑒𝑟 ) ;

center bits (usually not more than 16). To this end, if the center bits

count is less than or equal to 16, we use only 𝑙𝑜𝑔216 = 4 bits to

encode it. Although we need one more flag bit, we can usually save

one bit in comparison with the original solution. After optimizing

the center code, we get a compressor shown in Figure 7(c).

Flag Code Reassignment. Figure 7(c) shows that we use only
1 flag bit for the case of 𝑥𝑜𝑟𝑡 = 0, but 2 or 3 flag bits for the cases of

𝑥𝑜𝑟𝑡 ≠ 0. As pointed out by Chimp [34], identical consecutive values

are not very frequent in floating-point time series. Thus, using only

1 bit to indicate the case of 𝑥𝑜𝑟𝑡 = 0 is not particularly effective.

To this end, we reassign the flag codes to the four eases. Therefore,

each case uses only 2 bits of flag, as illustrated in Figure 7(d).

4.1.3 Summary of Elf XOR𝑐𝑚𝑝 . Algorithm 3 depicts the pseudo-

code of Elf XOR𝑐𝑚𝑝 , which is self-explanatory. In Lines 1-4, we

deal with the first value of a time series, and in Lines 6-22, we

handle the four cases shown in Figure 7(d) respectively. Note that

the function 𝑏𝑖𝑛𝑁𝑢𝑚𝑂𝑓 𝐿𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 (𝑥𝑜𝑟 ) in Line 11 calculates

the approximate leading zeros count of 𝑥𝑜𝑟 , as discussed above.

4.2 Elf XOR𝑑𝑐𝑚𝑝

The decompressor takes opposite actions of the compressor. As

shown in Algorithm 4, the proposed decompressor Elf XOR𝑑𝑐𝑚𝑝

takes an input stream 𝑖𝑛 as input. We decompress the first value in

Lines 1-3, and cope with the four cases respectively in Lines 5-18.

For case 01, the algorithm sets the current value 𝑣 ′𝑡 as the previous
one 𝑣 ′

𝑡−1
. For case 00, case 10 and case 11, we first update the leading

zeros count 𝑙𝑒𝑎𝑑𝑡 , center bits count 𝑐𝑒𝑛𝑡𝑒𝑟 and trailing zeros count

𝑡𝑟𝑎𝑖𝑙𝑡 respectively, and then get the current value 𝑣 ′𝑡 (Line 18). At
last, 𝑣 ′𝑡 is returned to Elf Restorer (Line 19).

Algorithm 4: 𝐸𝑙 𝑓 𝑋𝑂𝑅𝑑𝑐𝑚𝑝 (𝑖𝑛)
1 if it is the first value then // decompress the first value
2 𝑙𝑒𝑎𝑑𝑡 ←∞; 𝑡𝑟𝑎𝑖𝑙𝑡 ← 𝑖𝑛.𝑟𝑒𝑎𝑑 (7) ;
3 𝑣′𝑡 ← 𝑖𝑛.𝑟𝑒𝑎𝑑 (64 − 𝑡𝑟𝑎𝑖𝑙𝑡 ) << 𝑡𝑟𝑎𝑖𝑙𝑡 ;

4 else // decompress other values
5 𝑓 𝑙𝑎𝑔← 𝑖𝑛.𝑟𝑒𝑎𝑑 (2) ;
6 if 𝑓 𝑙𝑎𝑔 = “01” then // case 01 in Figure 7(d)
7 𝑙𝑒𝑎𝑑𝑡 ← 𝑙𝑒𝑎𝑑𝑡−1; 𝑡𝑟𝑎𝑖𝑙𝑡 ← 𝑡𝑟𝑎𝑖𝑙𝑡−1; 𝑣

′
𝑡 ← 𝑣′

𝑡−1
;

8 else
9 if 𝑓 𝑙𝑎𝑔 = “00” then // case 00 in Figure 7(d)
10 𝑙𝑒𝑎𝑑𝑡 ← 𝑙𝑒𝑎𝑑𝑡−1; 𝑡𝑟𝑎𝑖𝑙𝑡 ← 𝑡𝑟𝑎𝑖𝑙𝑡−1;

11 𝑐𝑒𝑛𝑡𝑒𝑟 ← 64 − 𝑙𝑒𝑎𝑑𝑡 − 𝑡𝑟𝑎𝑖𝑙𝑡 ;
12 else if 𝑓 𝑙𝑎𝑔 = “10” then // case 10 in Figure 7(d)
13 𝑙𝑒𝑎𝑑𝑡 ← 𝑖𝑛.𝑟𝑒𝑎𝑑 (3) ;𝑐𝑒𝑛𝑡𝑒𝑟 ← 𝑖𝑛.𝑟𝑒𝑎𝑑 (4) ;
14 𝑡𝑟𝑎𝑖𝑙𝑡 ← 64 − 𝑙𝑒𝑎𝑑𝑡 − 𝑐𝑒𝑛𝑡𝑒𝑟 ;
15 else // case 11 in Figure 7(d)
16 𝑙𝑒𝑎𝑑𝑡 ← 𝑖𝑛.𝑟𝑒𝑎𝑑 (3) ;𝑐𝑒𝑛𝑡𝑒𝑟 ← 𝑖𝑛.𝑟𝑒𝑎𝑑 (6) ;
17 𝑡𝑟𝑎𝑖𝑙𝑡 ← 64 − 𝑙𝑒𝑎𝑑𝑡 − 𝑐𝑒𝑛𝑡𝑒𝑟 ;
18 𝑣′𝑡 ← (𝑖𝑛.𝑟𝑒𝑎𝑑 (𝑐𝑒𝑛𝑡𝑒𝑟 ) << 𝑡𝑟𝑎𝑖𝑙𝑡 ) ⊕ 𝑣′

𝑡−1
;

19 return 𝑣′𝑡 ;

5 DISCUSSION
In this section, we first analyze the effectiveness and complexity of

Elf compression algorithm, and then investigate a possible variant.

Finally, we extend Elf to the special numbers of double values.

5.1 Effectiveness Analysis
Elf Eraser transforms a floating-point value to another one with

more trailing zeros under a guaranteed bound (see Theorem 4), so it

can potentially improve the compression ratio of most XOR-based

compression methods tremendously.

Theorem 4. Given a double value 𝑣 with its decimal significand
count 𝛽 = 𝐷𝑆 (𝑣), we can erase 𝑥 bits in its mantissa, where 51 −
𝛽𝑙𝑜𝑔210 < 𝑥 < 53 − (𝛽 − 1)𝑙𝑜𝑔210.

Proof. Suppose 𝛼 = 𝐷𝑃 (𝑣), we have:

𝐷𝐹 (𝑣) =
{
(𝑑𝛽−𝛼−1

𝑑𝛽−𝛼−2
...𝑑0 .𝑑−1𝑑−2 ...𝑑−𝛼 )10 if𝑣 ≥ 1

(0.00...𝑑𝛽−𝛼−1
𝑑𝛽−𝛼−2

...𝑑−𝛼 )10 if𝑣 < 1

=⇒ 10
𝛽−𝛼−1 ≤ 𝑣 < 10

𝛽−𝛼 =⇒ 𝑙𝑜𝑔210
𝛽−𝛼−1 ≤ 𝑙𝑜𝑔2𝑣 < 𝑙𝑜𝑔210

𝛽−𝛼

=⇒ ⌊(𝛽 − 𝛼 − 1)𝑙𝑜𝑔210⌋ ≤ ⌊𝑙𝑜𝑔2𝑣⌋ ≤ ⌊(𝛽 − 𝛼)𝑙𝑜𝑔210⌋
=⇒ ⌈𝛼𝑙𝑜𝑔210⌉ + ⌊(𝛽 −𝛼 − 1)𝑙𝑜𝑔210⌋ ≤ ⌈𝛼𝑙𝑜𝑔210⌉ + ⌊𝑙𝑜𝑔2𝑣⌋ = 𝑔(𝛼)
≤ ⌈𝛼𝑙𝑜𝑔210⌉ + ⌊(𝛽 − 𝛼)𝑙𝑜𝑔210⌋

=⇒ 𝛼𝑙𝑜𝑔210 + (𝛽 − 𝛼 − 1)𝑙𝑜𝑔210 − 1 < 𝑔(𝛼) < 𝛼𝑙𝑜𝑔210 + 1 + (𝛽−
𝛼)𝑙𝑜𝑔210 =⇒ (𝛽 − 1)𝑙𝑜𝑔210 − 1 < 𝑔(𝛼) < 𝛽𝑙𝑜𝑔210 + 1

=⇒ 51 − 𝛽𝑙𝑜𝑔210 < 52 − 𝑔(𝛼) = 𝑥 < 53 − (𝛽 − 1)𝑙𝑜𝑔210. □

According to Theorem 4, the number of erased bits is dependent

merely on the decimal significand count 𝛽 . A bigger 𝛽 usually means

fewer bits erased. If 𝛽 ≤ 14, we can erase at least ⌈51−14×𝑙𝑜𝑔210⌉ =
5 bits, which always guarantees a positive gain. But if 𝛽 ≥ 16, we

can only erase at most ⌊53 − (16 − 1) × 𝑙𝑜𝑔210⌋ = 3 bits, leading to

a negative gain as it requires at least 4 bits to record 𝛽∗. Therefore,
Elf compression algorithm keeps 𝑣 as it is when 𝐷𝑆 (𝑣) ≥ 16.



5.2 Complexity Analysis
5.2.1 Time Complexity. For each value, Elf Eraser (i.e., Algorithm 1)

can directly determine the erased bits in O(1) and perform the eras-

ing operation by efficient bitwise manipulations. In Elf XOR𝑐𝑚𝑝

(i.e., Algorithm 3), all operations can be performed in O(1). For Elf
Decompressor, Restorer (i.e., Algorithm 2) and XOR𝑑𝑐𝑚𝑝 (i.e., Algo-

rithm 4) sequentially read data from an input stream and perform

all operations in O(1). Overall, the time complexity of Elf is O(𝑁 ),
where 𝑁 is the length of a time series.

Our proposed Elf compression algorithm performs an extra eras-

ing step before actually compressing the data. It is reasonable that

the overall computation complexity of Elf compression algorithm

is a little bit higher than that of other XOR-based compression

methods, e.g., Gorilla and Chimp. However, thanks to the erasing

action, our method can achieve a much better compression ratio.

5.2.2 Space Complexity. Neither Eraser nor Restorer stores any
data, while both XOR𝑐𝑚𝑝 and XOR𝑑𝑐𝑚𝑝 only store and utilize the

previous leading zeros count 𝑙𝑒𝑎𝑑𝑡−1, trailing zeros count 𝑡𝑟𝑎𝑖𝑙𝑡−1

and value 𝑣 ′
𝑡−1

. To this end, the space complexity of Elf is O(1).

5.3 A Possible Variant Discussion
In the Elf erasing process, we let 𝑣 ′ = 𝑣 − 𝛿 where 0 ≤ 𝛿 < 10

−𝛼
.

Can we let 0 ≤ 𝛿 < 𝑘 × 10
−𝛼

, 𝑘 ∈ {1, 2, ..., 9}, which is supposed to

make 𝑣 ′ have more trailing zeros?

The decimal value 𝑘 × 10
−𝛼

can be represented by 𝑓𝑘 (𝛼) =

⌈|𝑙𝑜𝑔2 (𝑘 × 10
−𝛼 ) |⌉ = ⌈|𝑙𝑜𝑔2𝑘 − 𝛼𝑙𝑜𝑔210|⌉ binary bits. Since 𝑘 <

10 and 𝛼 ≥ 1, 𝑓𝑘 (𝛼) = ⌈𝛼𝑙𝑜𝑔210 − 𝑙𝑜𝑔2𝑘⌉. Back to Theorem 1,

𝛿 =
∑ |¯𝑙 |
𝑖=𝑓𝑘 (𝛼 )+1

𝑏𝑖 × 2
−𝑖 ≤ ∑ |¯𝑙 |

𝑖=𝑓𝑘 (𝛼 )+1
2
−𝑖 <

∑+∞
𝑖=𝑓𝑘 (𝛼 )+1 2

−𝑖 =

2
−𝑓𝑘 (𝛼 ) = 2

−⌈𝛼𝑙𝑜𝑔210−𝑙𝑜𝑔2𝑘 ⌉ ≤ 2
−(𝛼𝑙𝑜𝑔210−𝑙𝑜𝑔2𝑘 ) = 2

𝑙𝑜𝑔2 (𝑘×10
−𝛼 ) =

𝑘×10
−𝛼

. That is to say, if we erase the bits after𝑏−𝑓𝑘 (𝛼 ) in𝐵𝐹 (𝑣), we
can still recover 𝑣 by 𝐿𝑒𝑎𝑣𝑒𝑂𝑢𝑡 (𝑣 ′, 𝛼) +𝑘′ × 10

−𝛼
, where 𝐿𝑒𝑎𝑣𝑒𝑂𝑢𝑡

has the samemeaningwith that in Equation (4), and𝑘′ ∈ {1, 2, ..., 𝑘}.
But it requires ⌈𝑙𝑜𝑔2𝑘⌉ bits to store 𝑘′. We call this method Elf𝑘 .

Theorem 5. 𝐸𝑙 𝑓𝑘 will not achieve a better gain than 𝐸𝑙 𝑓 .

Proof. Suppose 𝑦 is the additional number of bits that 𝐸𝑙 𝑓𝑘 can

erase over 𝐸𝑙 𝑓 (i.e., 𝐸𝑙 𝑓1), then 𝑦 − ⌈𝑙𝑜𝑔2𝑘⌉ is the gain of 𝐸𝑙 𝑓𝑘 over

𝐸𝑙 𝑓 . We have: 𝑦 = (52 − 𝑔𝑘 (𝛼)) − (52 − 𝑔1 (𝛼)) = ⌈𝛼𝑙𝑜𝑔210⌉ −
⌈𝛼𝑙𝑜𝑔210 − 𝑙𝑜𝑔2𝑘⌉ =⇒ 𝛼𝑙𝑜𝑔210 − (𝛼𝑙𝑜𝑔210 − 𝑙𝑜𝑔2𝑘 + 1) < 𝑦 <

(𝛼𝑙𝑜𝑔210+1) − (𝛼𝑙𝑜𝑔210−𝑙𝑜𝑔2𝑘) =⇒ 𝑙𝑜𝑔2𝑘−1 < 𝑦 < 𝑙𝑜𝑔2𝑘 +1 =⇒
𝑙𝑜𝑔2𝑘 − 1 − ⌈𝑙𝑜𝑔2𝑘⌉ < 𝑦 − ⌈𝑙𝑜𝑔2𝑘⌉ < 𝑙𝑜𝑔2𝑘 + 1 − ⌈𝑙𝑜𝑔2𝑘⌉ =⇒ −2 <

𝑦 − ⌈𝑙𝑜𝑔2𝑘⌉ < 1. It means that 𝐸𝑙 𝑓𝑘 would consume the same bits

with or one more bit than 𝐸𝑙 𝑓 . □

5.4 Elf for Special Numbers
As shown in Figure 3, according to the values of ®𝒆 and ®𝒎, there are

four types of special numbers:

(1) Zero. If∀𝑖 ∈ {1, 2, ..., 11}, 𝑒𝑖 = 0 and∀𝑗 ∈ {1, 2, ..., 52},𝑚 𝑗 = 0,

then 𝑣 represents a zero.

(2) Infinity. If ∀𝑖 ∈ {1, 2, ..., 11}, 𝑒𝑖 = 1 and ∀𝑗 ∈ {1, 2, ..., 52},
𝑚 𝑗 = 0, then 𝑣 stands for an infinity.

(3)Not aNumber. If∀𝑖 ∈ {1, 2, ..., 11}, 𝑒𝑖 = 1 and∃ 𝑗 ∈ {1, 2, ..., 52},
𝑚 𝑗 = 1, then 𝑣 is not a number (i.e., 𝑣 = 𝑁𝑎𝑁 ).

(4) Subnormal Number. If ∀𝑖 ∈ {1, 2, ..., 11}, 𝑒𝑖 = 0 and ∃ 𝑗 ∈
{1, 2, ..., 52},𝑚 𝑗 = 1, then 𝑣 is a subnormal number (or a subnormal).

In this case, we have the following equation:

𝑣 = (−1)𝑠 × 2
−1022 × (0.𝑚1𝑚2 ...𝑚52)2

= (−1)𝑠 × 2
−1022 ×

52∑︁
𝑖=1

𝑚𝑖 × 2
−𝑖 (10)

For these four special numbers, their restorers, compressors and

decompressors are the same with that of normal numbers, but their

erasers need to be tailored carefully.

Zero and Infinity Eraser. If 𝑣 is a zero or infinity, we do not

perform Elf erasing because all its mantissa bits are already 0s.

NaN Eraser. If 𝑣 is NaN, in order to make its trailing zeros as

many as possible, we perform the 𝑁𝑎𝑁𝑛𝑜𝑟𝑚 operation on it, which

sets𝑚1 = 1 and𝑚𝑖 = 0 for 𝑖 ∈ {2, 3, ..., 52}, i.e.,

𝑣 ′ = 𝑁𝑎𝑁𝑛𝑜𝑟𝑚 (𝑣) = 0x7ff8000000000000L (11)

Subnormal Number Eraser. According to Equation (2) and

Equation (10), subnormal numbers can be regarded as the special

cases of normal numbers by setting 𝑒 = 1 and𝑚0 = 0. As a result,

we can compress subnormal numbers in the same way of normal

numbers using Elf Eraser.

6 EXPERIMENTS
6.1 Datasets and Experimental Settings
6.1.1 Datasets. To verify the performance of Elf compression algo-

rithm, we adopt 22 datasets including 14 time series and 8 non time

series, which are further divided into three categories respectively

according to their average decimal significand counts (as described

in Table 2). Apart from the datasets used by Chimp [34], we also add

three datasets (i.e., Vehicle-charge, City-lat and City-lon) to enrich

the non time series with small and medium decimal significand

counts. Each time series is ordered by the timestamps, while each

non time series is in a random order given by its data publisher.

City-temp [2], collected by the University of Dayton to record

the temperature of major cities around the world.

IR-bio-temp [43], which exhibits the changes in the tempera-

ture of infrared organisms.

Wind-speed [40], which describes the wind speed.

PM10-dust [42], which records near real-time measurements of

PM10 in the atmosphere.

Stocks-UK, Stocks-USA and Stocks-DE [5], which contain

the stock exchange prices of UK, USA and German respectively.

Dewpoint-temp [44], which records relative dew point temper-

ature observed by sensors floating on rivers and lakes.

Air-pressure [41], which shows Barometric pressure corrected

to sea level and surface level.

Basel-wind and Basel-temp [7], which respectively record the

historical wind speed and temperature of Basel, Switzerland.

Bitcoin-price [8], which includes the price of Bitcoin in dollar

exchange rate.

Bird-migration [8], an online dataset of animal tracking data

that records the position of birds and the vegetation.

Air-sensor [8], a synthetic dataset recording air sensor data

with random noise.

Food-price [6], global food prices data from the World Food

Programme.



Table 2: Details of Datasets

Dataset #Records 𝛽 Time Span

T
im

e
Se
ri
es

Small 𝛽

City-temp (CT) 2,905,887 3 25 years

IR-bio-temp (IR) 380,817,839 3 7 years

Wind-speed (WS) 199,570,396 2 6 years

PM10-dust (PM10) 222,911 3 5 years

Stocks-UK (SUK) 115,146,731 5 1 year

Stocks-USA (SUSA) 374,428,996 4 1 year

Stocks-DE (SDE) 45,403,710 6 1 year

Medium Dewpoint-temp (DT) 5,413,914 4 3 years

𝛽 Air-pressure (AP) 137,721,453 7 6 years

Basel-wind (BW) 124,079 8 14 years

Basel-temp (BT) 124,079 9 14 years

Bitcoin-price (BP) 2,741 9 1 month

Bird-migration (BM) 17,964 7 1 year

Large 𝛽 Air-sensor (AS) 8,664 17 1 hour

N
on

T
im

e
Se
ri
es Small 𝛽 Food-price (FP) 2,050,638 3 -

Vehicle-charge (VC) 3,395 3 -

Blockchain-tr (BTR) 231,031 5 -

Medium SD-bench (SB) 8,927 4 -

𝛽 City-lat (CLat) 41,001 6 -

City-lon (CLon) 41,001 7 -

Large 𝛽 POI-lat (PLat) 424,205 16 -

POI-lon (PLon) 424,205 16 -

Vehicle-charge [3], which records the total energy use and

charge time of a collection of electric vehicles.

Blockchain-tr [1], which records the transaction value of Bit-

coin for a single day.

SD-bench [10], which describes the performance of multiple

storage drives through a standardized series of tests.

City-lat, City-lon [11], which records the latitude and longitude

of the cities and towns all over the world.

POI-lat, POI-lon [9], the coordinates in radian of Position-of-

Interests (POI) extracted from Wikipedia.

6.1.2 Baselines. We compare Elf compression algorithm with four
state-of-the-art lossless floating-point compression methods (i.e.,

Gorilla [46], Chimp [34], Chimp128 [34] and FPC [16]) and five
widely-used general compression methods (i.e., Xz [12], Brotli [13],

LZ4 [19], Zstd [18] and Snappy [21]). By regarding Elf Eraser as
a preprocessing step, we also compare three variants of Gorilla,

Chimp and Chimp128 (denoted as Gorilla+Eraser, Chimp+Eraser

and Chimp128+Eraser respectively) to verify the effectiveness of

the erasing and XOR𝑐𝑚𝑝 strategies. Most implementations of these

competitors are extended from [34]. To make a fair comparison,

we optimize the stream implementation of Gorilla as the same as

Chimp [34], which improves the efficiency of Gorilla tremendously.

All source codes and datasets are publicly available [4].

6.1.3 Metrics. We verify the performance of various methods in

terms of three metrics: compression ratio, compression time and

decompression time. Note that the compression ratio is defined as

the ratio of the compressed data size to the original one.

6.1.4 Settings. As Chimp [34] did, we regard 1,000 records of each

dataset as a block. Each compression method is executed on up

to 100 blocks per dataset, and the average metrics of one block

are finally reported. All experiments are conducted on a personal

computer equipped with Windows 11, 11th Gen Intel(R) Core(TM)

i5-11400 @ 2.60GHz CPU and 16GB memory. The JDK (Java Devel-

opment Kit) version is 1.8.

6.2 Overall Comparison with Baselines
Table 3 shows the performance of different compression algorithms

on all datasets. We group the datasets into two categories (i.e., Time

Series and Non Time Series), and investigate the performance of

floating-point compression algorithms and general compression

algorithms on each group of datasets, respectively.

6.2.1 Compression Ratio. With regard to the compression ratio,

we have the following observations from Table 3.

(1) Elf VS floating-point compression algorithms. Among

all the floating-point compression algorithms, Elf has the best com-

pression ratio on almost all datasets. In particular, for the time series

datasets, compared with Gorilla and FPC, Elf has an average relative
improvement of (0.76 − 0.37)/0.76 ≈ 51%. Chimp has optimized

the coding of Gorilla, and its upgraded version Chimp128 resorts to

a hash table (up to 33KB memory occupation) for fast searching an

appropriate value in previous 128 data records. Therefore, they can

achieve a significant improvement over Gorilla. However, thanks to

the erasing technique and elaborate XOR𝑐𝑚𝑝 , Elf can still achieve

relative improvement of 47% and 12% over Chimp and Chimp128 re-

spectively on the time series datasets. Note that Elf has a lowermem-

ory footprint (i.e., O(1)) in comparison with Chimp128. For the non

time series datasets, Elf is also relatively (0.63 − 0.55)/0.63 ≈ 12.7%

better than the best competitor Chimp128. We notice that there

are few datasets that Chimp128 is slightly better than Elf in terms

of compression ratio. For the datasets of WS, SUSA and BT, we

find that there are many duplicate values within 128 consecutive

records. In this case, Chimp128 can use only 9 bits to represent the

same value. For the datasets of AS, PLat and PLon, since they have

large decimal significand counts, Elf does not perform erasing but

still consumes some flag bits. As pointed out by [34], real-world

floating point measurements often have a decimal place count of

one or two, which usually results in small or medium 𝛽 . To this end,

Elf can achieve good performance in most real-world scenarios.

(2) Elf VS general compression algorithms. Most of the gen-

eral compression algorithms have a good compression ratio. How-

ever, upon most occasions, Elf is still better than LZ4, Zstd and

Snappy (with average relative improvement of 30.2%, 7.5% and

27.5% respectively for the time series datasets, and 18%, 3.5% and

16.7% respectively for the non time series datasets), and shows a

similar performance to Xz and Brotli in terms of compression ratio.

Moreover, in comparison with non time series datasets, Elf can
achieve more improvement over general compression algorithms

for time series datasets (e.g., 30.2% v.s. 18% for LZ4). It is because

non time series datasets do not have a time-based ordering, which

reduces the usefulness of exploiting previous values.

(3) Different decimal significand counts. As shown in Ta-

ble 3, with a larger 𝛽 , both general and floating-point compression

algorithms suffer from a lower compression ratio, since a larger 𝛽



Table 3: Overall comparison with baselines (the best values in each group are marked in bold). The compression ratio, compres-
sion time and decompression time are the average measurements on one block (i.e., 1,000 values).

Dataset
Time Series Non Time Series

Small 𝛽 Medium 𝛽 Large 𝛽
Avg.

Small 𝛽 Medium 𝛽 Large 𝛽
Avg.

CT IR WS PM10 SUK SUSA SDE DT AP BW BT BP BM AS FP VC BTR SB CLat CLon PLat PLon

C
om

pr
es
si
on

R
at
io

Fl
oa

ti
ng

Gorilla 0.85 0.64 0.83 0.48 0.58 0.68 0.72 0.83 0.73 0.99 0.94 0.84 0.79 0.82 0.76 0.58 1.00 0.74 0.63 1.03 1.03 1.03 1.03 0.88

Chimp 0.64 0.59 0.81 0.46 0.52 0.64 0.67 0.77 0.65 0.88 0.85 0.77 0.72 0.77 0.70 0.47 0.86 0.67 0.55 0.92 0.98 0.90 0.99 0.79

Chimp128 0.32 0.24 0.23 0.21 0.29 0.23 0.27 0.35 0.54 0.71 0.47 0.72 0.50 0.77 0.42 0.34 0.36 0.55 0.27 0.78 0.85 0.90 0.99 0.63

FPC 0.75 0.61 0.85 0.50 0.74 0.70 0.73 0.82 0.67 0.92 0.90 0.81 0.75 0.82 0.75 0.62 0.91 0.69 0.59 0.96 1.00 0.95 1.00 0.84

Elf 0.25 0.21 0.25 0.16 0.22 0.24 0.26 0.31 0.31 0.59 0.58 0.56 0.42 0.85 0.37 0.23 0.34 0.36 0.27 0.56 0.63 0.96 1.06 0.55

G
en

er
al

Xz 0.18 0.16 0.15 0.11 0.16 0.17 0.19 0.27 0.47 0.57 0.35 0.63 0.43 0.79 0.33 0.23 0.23 0.40 0.13 0.60 0.63 0.93 0.96 0.51
Brotli 0.20 0.18 0.17 0.12 0.19 0.20 0.22 0.32 0.51 0.61 0.39 0.71 0.47 0.85 0.37 0.26 0.28 0.43 0.14 0.65 0.68 0.94 0.96 0.54

LZ4 0.36 0.36 0.37 0.27 0.39 0.39 0.41 0.52 0.69 0.69 0.54 0.87 0.61 1.01 0.53 0.41 0.47 0.53 0.30 0.79 0.82 1.00 1.00 0.67

Zstd 0.22 0.24 0.19 0.14 0.22 0.24 0.26 0.38 0.58 0.61 0.41 0.75 0.51 0.91 0.40 0.30 0.34 0.45 0.17 0.68 0.71 0.94 0.96 0.57

Snappy 0.29 0.30 0.27 0.21 0.32 0.32 0.35 0.51 0.73 0.75 0.54 0.99 0.61 1.00 0.51 0.39 0.42 0.54 0.25 0.83 0.87 1.00 1.00 0.66

C
om

pr
es
si
on

T
im

e
(`
s)

Fl
oa

ti
ng

Gorilla 18 21 17 15 17 17 17 18 20 21 20 19 18 20 18 16 19 18 16 19 19 19 19 18
Chimp 23 21 22 18 23 22 23 24 20 26 25 24 25 27 23 21 24 22 20 26 26 23 26 23

Chimp128 23 23 22 20 24 22 25 26 38 47 35 48 38 50 32 27 27 39 23 48 48 45 46 38

FPC 34 40 40 40 28 28 28 31 40 42 47 27 30 38 35 39 43 43 41 42 48 40 48 43

Elf 51 53 59 50 54 56 58 57 51 73 69 63 65 87 60 52 55 62 48 64 70 71 72 62

G
en

er
al

Xz 948 1106 810 1056 877 836 900 1045 1959 1527 1100 1531 1444 2146 1235 898 1636 1036 1040 1252 1516 1476 1351 1276

Brotli 1639 1685 1557 1449 1584 1611 1693 1702 2074 1792 1715 1729 1827 1798 1704 1741 1674 1755 1522 1692 1712 1628 1633 1669

LZ4 1082 1106 963 984 966 976 952 1091 1285 1013 1010 1001 1000 1026 1032 985 974 1060 976 988 986 966 957 987

Zstd 209 212 112 208 177 112 117 218 317 259 291 271 256 277 217 211 227 251 202 236 245 206 113 211

Snappy 195 236 52 214 169 56 172 195 179 189 200 169 261 158 175 188 250 190 200 207 238 178 149 200

D
ec
om

pr
es
si
on

T
im

e
(`
s)

Fl
oa

ti
ng

Gorilla 16 18 17 21 16 17 17 17 18 23 18 16 17 20 18 16 18 17 16 17 17 17 17 17
Chimp 24 22 24 19 22 24 24 54 19 30 26 27 25 25 26 21 26 24 21 26 26 24 26 24

Chimp128 17 16 16 15 18 16 18 18 22 28 21 26 22 25 20 18 19 22 17 26 26 23 24 22

FPC 28 28 26 29 25 24 25 25 32 27 31 24 26 34 28 28 29 29 29 30 36 28 35 31

Elf 38 44 46 43 37 45 44 45 41 58 53 48 48 29 44 33 44 49 39 52 57 31 33 42

G
en

er
al

Xz 161 147 114 125 156 133 148 226 435 427 284 479 345 629 272 196 194 312 126 434 461 664 663 381

Brotli 61 58 36 53 41 43 69 70 109 97 79 93 87 100 71 103 70 86 58 243 85 86 77 101

LZ4 40 35 18 37 19 19 18 42 56 42 38 40 38 44 35 36 37 39 37 38 37 35 19 35
Zstd 46 48 30 42 31 31 50 45 99 66 113 72 62 68 57 45 47 60 44 47 48 43 32 46

Snappy 38 54 20 38 19 21 20 39 49 40 42 41 46 48 37 40 39 39 36 42 37 32 43 38

means a more complex data layout. To this end, the poor compres-

sion ratio on datasets with a large 𝛽 is not just a problem for Elf. It is
a common and interesting problem worthy of further exploration.

6.2.2 Compression Time and Decompression Time. As shown in

the lower parts of Table 3, we have the following observations.

(1) The general compression algorithms take one or two orders of

magnitude of more compression time than floating-point compres-

sion algorithms on average. For example, although Xz can achieve

a slightly better compression ratio than Elf, it takes as much as 200

times longer than Elf. Even for the fastest general compression al-

gorithms Zstd and Snappy, they still take about 3 times longer than

Elf, which prevents them from being applied to real-time scenarios.

(2) Elf takes a little more time than other floating-point compres-

sion algorithms during both compression and decompression pro-

cesses. Comparedwith other floating-point compression algorithms,

Elf adds an erasing step and a restoring step, which inevitably takes

more time. However, the difference is not obvious, since they are all

on the same order of magnitude. Gorilla has the least compression

time and decompression time, because it considers fewer cases (see

Figure 7(a)) compared with Chimp and Chimp128.

(3) In comparison with compression time, the distinction of de-

compression time among different algorithms (except for Xz) is

insignificant, since most algorithms sequentially read the decom-

pression stream directly. As a result, most algorithms focus more

on the trade-off between compression ratio and compression time.

6.2.3 Summary. In summary, Elf can usually achieve remarkable

compression ratio improvement for both time series datasets and

non time series datasets, with the affordable cost of more time.

One interesting question is howmuch efficiency gain can we ben-

efit from Elf over the best competitor𝐶ℎ𝑖𝑚𝑝128? Consider a scenario

of data transmission. Suppose the raw data size is 𝐷 , the compres-

sion ratio is [, and the rates of compression, decompression and

transmission are 𝑟𝑐𝑚𝑝 , 𝑟𝑑𝑐𝑚𝑝 and 𝑟𝑡𝑟 , respectively. The latency of

the whole data from sending to receiving is: 𝑡 = 𝐷/𝑟𝑐𝑚𝑝+𝐷/𝑟𝑑𝑐𝑚𝑝+
𝐷 × [/𝑟𝑡𝑟 . According to Table 3, in terms of the average metrics for

time series, we have 𝑟
𝐸𝑙 𝑓
𝑐𝑚𝑝 = 1000×64/(60×10

−6) ≈ 1.07×10
9
bits/s,

𝑟
𝐸𝑙 𝑓

𝑑𝑐𝑚𝑝
= 1000× 64/(44× 10

−6) ≈ 1.45× 10
9
bits/s, and [𝐸𝑙 𝑓 = 0.37.

Similarly, 𝑟
𝐶ℎ𝑖𝑚𝑝128

𝑐𝑚𝑝 = 2 × 10
9
bits/s, 𝑟

𝐶ℎ𝑖𝑚𝑝128

𝑑𝑐𝑚𝑝
= 3.2 × 10

9
bits/s,
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(a) Compression Ratio in AS.
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(b) Compression Ratio in PLon.
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(c) Compression Time in AS.
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(d) Compression Time in PLon.
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(e) Decompression Time in AS.

 0

 20

 40

 60

 80

 100

1 4 8 12 16D
ec

o
m

p
re

ss
io

n
 T

im
e 

(µ
s)

 β

Elf
Chimp128

Snappy

(f) Decompression Time in PLon.

Figure 8: Performance with Different 𝛽 .

and [𝐶ℎ𝑖𝑚𝑝128 = 0.42. Therefore, 𝑡𝐸𝑙 𝑓 /𝑡𝐶ℎ𝑖𝑚𝑝128 ≈ (1.62 + 0.37 ×
10

9/𝑟𝑡𝑟 )/(0.81 + 0.42 × 10
9/𝑟𝑡𝑟 ), where 𝑟𝐸𝑙 𝑓𝑡𝑟 = 𝑟

𝐶ℎ𝑖𝑚𝑝128

𝑡𝑟 = 𝑟𝑡𝑟 . Let

𝑡𝐸𝑙 𝑓 /𝑡𝐶ℎ𝑖𝑚𝑝128 < 1, we have 𝑟𝑡𝑟 < 6.17 × 10
7
bits/s. That is, when

the transmission rate is smaller than 6.17 × 10
7
bits/s, the overall

performance of Elf is supposed to be better than that of Chimp128.

We want to emphasize two points here. First, in a typical client-

server architecture, the bandwidth and memory in the server are

rather precious resources, and the bandwidth for a connection

rarely exceeds 6.17 × 10
7
bits/s. Moreover, for each connection,

Chimp128 would allocate 33KB memory, which is unaffordable for

high concurrency scenarios. Second, we find that the most time-

consuming part of Elf is to calculate 𝛽 of a floating-point value. If we
could calculate it faster, the efficiency would be further enhanced

tremendously. Maybe in the future we can design a special hardware

or a special computer instruction to achieve this.

6.3 Performance with Different 𝛽
To further investigate the effect of 𝛽 , we conduct a set of experi-

ments by gradually reducing the decimal significand counts of a

time series dataset AS and a non time series dataset PLon. We select

Chimp128 and Snappy as baselines, since they achieve the best trade-

off between the compression ratio and compression time among the

floating-point competitors and general competitors respectively.

As shown in Figure 8(a) and Figure 8(b), with an increasing 𝛽

from 1 to 15, the compression ratio of Elf increases linearly, which
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(a) Time Series with Small 𝛽 .
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(b) Non Time Series with Small 𝛽 .
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Figure 9: Compression Ratio Improvement of Erasing and
XOR𝑐𝑚𝑝 Strategies.

is consistent with Theorem 4. When 𝛽 is greater than 15, the com-

pression ratio of Elf keeps stable, because Elf does not perform the

erasing step if 𝛽 > 15. For Chimp128 and Snappy, with the increase

of 𝛽 , their compression ratios first increase steeply and then keep

stable when 𝛽 > 6. On both AS and PLon, Elf always has the best
compression ratio if 𝛽 is between 3 and 13. When 𝛽 = 6, the com-

pression ratio gain of Elf over Chimp128 and Snappy achieves the

highest (33% and 55% relative improvement in AS, and 40.2% and

41.6% relative improvement in PLon, respectively). For the time

series dataset AS, Elf always performs better than Snappy, because

Elf can capture the time ordering characteristic.

Figures 8(c-f) present the compression time and decompression

time of the three algorithms on the two datasets, respectively. With

a larger 𝛽 that 𝛽 < 15, the compression time and decompression

time of both Elf and Chimp128 get larger, because they need to write

or read more streams. Things have changed for Snappy because

it contains a complex dictionary building step. When 𝛽 ≥ 15, the

decompression time of Elf drops sharply, because it skips the restor-
ing step. On both datasets, Elf takes slightly more compression time

than Chimp128, but much less than Snappy. Besides, although Elf
takes about double decompression time of Chimp128, it is still less

than 60`s for all values of 𝛽 .

6.4 Validation of Erasing and XOR𝑐𝑚𝑝 Strategies
To verify the effectiveness of the erasing strategy, we regard Elf
Eraser as a preprocessing operation onGorilla, Chimp andChimp128.



Figures 9(a-f) present the average compression ratio improvement

over the native methods in three groups of 𝛽 . It is observed that:

(1) For both time series datasets and non time series datasets with

small or medium 𝛽 , our proposed erasing strategy can improve the

compression ratio of Gorilla and Chimp dramatically. In particular,

if 𝛽 is small, with the equipment of Elf Eraser, Gorilla can obtain a

relative improvement of 62.2% and 51.6% on the time series datasets

and non-time series datasets, respectively, while Chimp can also

enjoy a relative improvement of 56.8% and 49.5%, respectively.

(2) Chimp128 can be hardly enhanced by Elf Eraser. This is be-
cause Chimp128 leverages the least 14 significant mantissa bits as

its hash key. After erasing the mantissa, it is hard for Chimp128 to

find an appropriate previous value, which might result in an XORed

value with a small number of leading zeros. Besides, keeping track

of the positions of the chosen values consumes additional bits. As a

result, unlike Chimp128, Elf considers only the neighboring values.

(3) For datasets with large 𝛽 , Elf Eraser cannot enhance the XOR-
based compressors, because for large 𝛽 , Elf Eraser gives up erasing

to avoid a negative gain.

(4) If 𝛽 is not large, Elf compression algorithm is even 8.7%∼33.3%
better than the Eraser-enhanced Gorilla and Chimp, which verifies

the effectiveness of the optimization for XOR𝑐𝑚𝑝 .

7 RELATEDWORKS
7.1 General Compression
There are a wide range of impressive compression methods for

general purposes, such as Xz [12], Brotli [13], LZ4 [19], Zstd [18]

and Snappy [21]. Zstd combines a dictionary-matching stage with

a fast entropy-coding stage. The dictionary is trainable and can be

generated from a set of samples. Snappy also refers to a dictionary

and stores the shift from the current position back to uncompressed

stream. Both Zstd and Snappy can achieve a good trade-off be-

tween compression ratio and efficiency. Most general compression

methods are lossless and can achieve a good compression ratio, but

they do not leverage the characteristics of floating-point values and

cannot be applied directly to streaming scenarios [28] either.

7.2 Lossy Floating-Point Compression
Since floating-point data is stored in a complex format, it is chal-

lenging to compress floating-point data without losing any preci-

sion. To this end, many lossy floating-point compression methods

are proposed [27, 35–38, 54, 55]. For example, the representative

method ZFP [36] compresses regularly gridded data with a cer-

tain loss guarantee. MDZ [55] is an adaptive error-bounded lossy

compression framework that optimizes the compression for two

execution models of molecular dynamics. However, these lossy

compression methods are usually application specific. Moreover,

many scenarios, especially in the fields of scientific calculation and

databases [29, 50, 52], do not tolerate any loss of precision.

7.3 Lossless Floating-Point Compression
Most lossless floating-point compression algorithms are based on

prediction. The distinction among them lies in two aspects: 1) How

does the predictor work? 2) How to handle the difference between

the predicted value and the real one?

Based on the former aspect, lossless floating-point compression

algorithms can be further divided into model-based methods [15–

17, 24, 25, 47, 51] and previous-value methods [34, 46]. DFCM [47]

maps floating-point values to unsigned integers and predicts the

values by a DFCM (differential finite context method) predictor.

However, DFCM only works well for smoothly changing data.

FPC [16, 17] sequentially predicts each value in a streaming fashion

using two context-based predictors, i.e., FCM predictor [48] and

DFCM predictor (which is quite different from that in DFCM [47]).

Among the predicted values obtained by the two predictors, FPC

chooses the closer one, and thus it can achieve a better prediction

performance. Some other model-based methods [24, 25, 51] capture

the characteristics of different series usingmachine learningmodels,

and eventually choose the best compression approach. Due to the

high cost of prediction, Gorilla [46] and Chimp [34] directly regard

the previous one value as the predicted one, based on the observa-

tion that two consecutive values do not change much. Chimp128 is

an upgraded version of Chimp, which exploits 128 earlier values to

find the best matched value. To expedite the computation efficiency,

Chimp128 maintains a hash table with size of 33KB, which might

be not applicable in edge computing scenarios [39, 49].

Based on the latter aspect, a small number of methods [20] first

map the differences between the predicted values and actual values

to integers, and then compress the integers using integer-oriented

compression techniques such as Delta encoding [46]. On the con-

trary, a majority of methods [17, 34, 46] encode their XORed values

instead of the differences. Gorilla [46] assumes that the XORed

values would contain both long leading zeros and long trailing

zeros with high probability, so it uses 5 bits to record the number

of leading zeros and 6 bits to store the number of trailing zeros.

Chimp [34] points out the fact that the XORed values rarely have

long trailing zeros, so it is ineffective for Gorilla to take up to 6 bits

to record the number of trailing zeros. Therefore, Chimp optimizes

the encoding strategy for the XORed values and can use fewer bits.

As a lossless compression solution, Elf belongs to a previous-

value method and encodes the XORed values. However, different

from Gorilla and Chimp, Elf performs an erasing operation on the

floating-point values before XORing them, which makes the XORed

values contain many trailing zeros. Besides, Elf designs a novel

encoding strategy for the XORed values with many trailing zeros,

which achieves a notable compression ratio.

8 CONCLUSION AND FUTUREWORK
This paper proposes a novel, compact and efficient erasing-based

lossless floating-point compression algorithm Elf. Extensive experi-
ments using 22 datasets verify the powerful performance of Elf. In
particular, Elf achieves average relative compression ratio improve-

ment of 12.4% and 43.9% over Chimp128 and Gorilla, respectively.

Besides, Elf has a similar compression ratio to the best general

compression algorithm with much less time. In our future work,

we plan to optimize Elf for specific data types, such as trajectories.
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