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Xianlong Jiao , Member, IEEE, Yunhui Chen, Xiang Wu, Ruiyuan Li , Songtao Guo , Senior Member, IEEE,
Yong Ma , and Jiannong Cao, Fellow, IEEE

Abstract—As a novel promising computational paradigm, wire-
less powered mobile edge computing (WPMEC) has been proposed
to offer real-time energy and computing services for Internet of
Things (IoT) devices. However, time-varying limited resources such
as communication quality and residual energy pose great chal-
lenges in devising suitable real-time task offloading and resource
allocation strategies to meet users’ requirements for low latency
and energy consumption. Existing studies either employ raw data
offloading methods with significant communication overhead, or
utilize ordinary data compression methods that result in poor
compression effects. To cope with the challenges, this paper con-
siders introducing the state-of-the-art lossless data compression
technology into WPMEC and study the online joint optimization
problem of task offloading decision, charging time allocation, and
compression proportion allocation with the goal of optimizing task
completion time. To tackle this problem, we propose an Intelligent
Compression Offloading and adaptive resource Allocation algo-
rithm called ICOA. We first put forward a well-devised framework
based on deep reinforcement learning to generate a offloading
decision vector set in real-time. Then we standardize the resource
allocation problem as a linear programming problem and solve
it using the simplex method. The experimental results on a real
dataset show that, compared with the benchmark algorithms, the
proposed algorithm can effectively reduce the task accomplishing
time and energy consumption, and achieve the best approximate
ratio. Moreover, ICOA requires low runtime, and can satisfy the
real-time and effectiveness requirements very well.

Index Terms—Offloading decision generation, lossless data
compression, resource allocation, wireless powered mobile edge
computing.

I. INTRODUCTION

W ITH the rapid development and popularization of the
information technology, the ubiquitous interconnection

of wireless devices and the intelligent perception of data enable
Internet of Things (IoT) to significantly improve people’s life

Received 29 June 2025; revised 8 October 2025; accepted 13 October 2025.
Date of publication 22 October 2025; date of current version 11 December 2025.
This work was supported in part by the Natural Science Foundation of Chongqing
under Grant CSTB2024NSCQ-MSX0522, and in part by the National Natural
Science Foundation of China under Grant 62072064, Grant 62272069, and Grant
62572086. (Corresponding author: Xianlong Jiao.)

Xianlong Jiao, Yunhui Chen, Xiang Wu, Ruiyuan Li, and Songtao Guo
are with the College of Computer Science, Chongqing University, Chongqing
400044, China (e-mail: xljiao@cqu.edu.cn; yhchen@stu.cqu.edu.cn; xwu@stu.
cqu.edu.cn; ruiyuan.li@cqu.edu.cn; guosongtao@cqu.edu.cn).

Yong Ma is with Jiangxi Normal University, Nanchang 330022, China (e-
mail: may@jxnu.edu.cn).

Jiannong Cao is with the Department of Computing, Hong Kong Polytechnic
University, Kowloon Hong Kong (e-mail: jiannong.cao@comp.polyu.edu.hk).

Digital Object Identifier 10.1109/TSC.2025.3624068

and work efficiency [1]. Mobile edge computing (MEC) moves
the computing and storage capacity to the edge of the IoT
network to serve users more closely, thereby reducing task
completion time and improving the response speed [2], [3].
However, the extremely limited battery lives of IoT devices have
become one of the important factors affecting the quality of user
experience. Traditional wired charging methods not only limit
the usage scenarios of IoT devices, but also bring cumbersome
operation steps to users [4], when these devices are located
in complex or hazardous environments. Moreover, emerging
computation-intensive application fields (such as smart home,
augmented reality, smart healthcare, etc.) put forward higher
requirements for the energy efficiency of IoT devices in MEC
applications. Fortunately, the wireless charging technology has
been utilized to reduce manual maintenance costs and ensure
the sustainability guarantee of energy supply [5]. Customized
wireless charging solutions for these emerging application areas
can help promote the rapid development of related industries [6].
Therefore, wireless powered mobile edge computing (WPMEC)
has received widespread attention in recent years [7], [8], [9].

The booming development of the IoT has led to the continuous
expansion of latency-sensitive and computation-intensive appli-
cations [10]. One of the advantages of WPMEC is to achieve
better application responsiveness by offloading tasks from IoT
devices to nearby edge servers [11]. In a typical user behavior
analysis application scenario, multiple mobile wireless devices
equipped with high-precision sensors continuously collect real-
time kinematic and user-related floating-point data, including
acceleration, angular velocity, and positional coordinates, etc.
These devices are wirelessly powered by dedicated edge servers,
eliminating the need for frequent manual charging and enabling
sustained operation in dynamic environments. The edge servers
provide computation offloading and real-time data processing.
They perform feature extraction tasks (such as trajectory pre-
diction, motion anomaly detection, or sensor fusion) and return
the processed results to the mobile devices. In the WPMEC
network, reasonable allocation of computing, communication
and charging resources can enhance the performance of task
offloading. Worthy of note is that, to avoid signal interference,
wireless charging and task offloading cannot be performed si-
multaneously. In real-time applications, if the charging time is
long, the task offloading time will be short. If the charging time
is short, the energy collected by the devices will be little, thereby
affecting the sustainable operational capability of the devices.
Hence, it is vital to devise task offloading and resource allocation
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methods for improving the network performance and resource
utilization.

A few papers focus on optimizing the total computation
rates [5] or the total task completion time [12] by proposing
online task offloading and resource allocation methods. Never-
theless, these studies rely on raw task data transmission, and
incur high communication overhead. The task data, such as sen-
sor data from smart home devices and physiological monitoring
data from smart medical devices, is usually floating point data.
The task data is not only massive in quantity, but also requires
extremely high precision. In particular, the lossless compression
technology for floating point data can significantly reduce data
storage and transmission overhead without sacrificing any data
accuracy [13], [14], [15]. Therefore, it has very important re-
search significance to apply the lossless compression technology
into the online task offloading and resource allocation, which
has not been well investigated by the existing research [5], [12].
Some studies [16], [17], [18], [19], [20] incorporate the loss-
less compression technology into the task offloading, but does
not utilize the state-of-the-art lossless compression technology.
Hence, it is difficult for these studies to effectively reduce the
task offloading time and energy consumption.

This paper investigates the online task offloading and re-
source allocation problem for WPMEC with the support of the
state-of-the-art lossless compression technology Elf [13]. Elf
is a novel and highly efficient stream-based lossless compres-
sion algorithm for floating-point data. It demonstrates superior
compression performance over existing lossless compression
algorithms, and thus is adopted in this paper. In addition to
the CPU and storage, charging time and compression propor-
tions are critical system resources that significantly impact task
completion time. These resources require adaptive allocation in
response to dynamic system conditions, and thus are considered
in our paper.

Specifically, we consider the joint optimization problem of
task offloading decision, charging time allocation, and com-
pression proportion allocation under both the residual energy
and real-time constraints for WPMEC. We face the following
two challenges on real-time and efficiency. 1) How to achieve
the joint optimization decision solution of task offloading and
resource allocation in real-time under dynamic changing sce-
narios? Channel gains may change with the movement of IoT
devices. The size of the task data that the device needs to
complete is random. Affected by the energy harvesting and
consuming, IoT devices possess time-varying residual energy.
These dynamic changing factors in WPMEC make it highly
challenging to achieve the joint optimization decision solution
of task offloading and resource allocation in real-time. 2) How to
make the devised algorithm converge to the optimal solution by
learning the previous experience? The decision of task offload-
ing and resource allocation is made in each time-frame. It is vital
to learn the previous decision experience to assist the current
decision-making. Nevertheless, the environment varies across
different time-frames, and it is challenging for the algorithm
to converge to the optimal solution by learning the previous
decision-making experience.

In this paper, to cope with the above challenges, we propose
an Intelligent Compression Offloading and adaptive resource
Allocation algorithm, called ICOA, which can make real-time
decision for task offloading and resource allocation with near op-
timal task completion time. The proposed novel ICOA algorithm
integrates a well-devised deep reinforcement learning (DRL)
framework with a simplex-based resource allocation method.
This hybrid strategy is specifically designed to meet stringent
real-time and high-efficiency requirements in dynamic environ-
ments. The DRL framework learns to make intelligent offloading
decisions, while the simplex method provides adaptive resource
optimization. This combination enables our algorithm to rapidly
converge to a near-optimal solution, significantly outperform-
ing traditional methods in both the task completion time and
resource utilization efficiency.

First, we decompose the joint optimization problem into two
sub-problems: offloading decision generation, and allocation of
charging time and compression proportion. Second, we propose
a well-devised deep reinforcement learning (DRL) framework
to generate an offloading decision vector set in real-time. We
employ the DRL framework for its model-free capability to learn
optimal policies directly from high-dimensional state spaces
and complex environmental interactions. By leveraging deep
neural networks, DRL generalizes effectively across states and
learns more intelligent, robust, and self-improving solutions
without requiring explicit system models or prior dynamics
knowledge. Third, for each generated offloading decision vector,
we standardize the second sub-problem as a linear programming
problem, and address this sub-problem via the simplex method.
Finally, we achieve the optimal solution in all the candidate
solutions, and promote the algorithm convergence by leveraging
the experience replay technology.

The main contributions of this paper are listed as follows:
� We formulate the joint optimization problem of offloading

decision generation, charging time allocation, and com-
pression proportion allocation in WPMEC, whose goal is
to minimize the total task completion time while ensuring
energy feasibility and time feasibility. To our best knowl-
edge, this paper is the first research to study this problem.
We formally prove the non-convexity and NP-hardness of
this problem.

� To reduce the difficulty of problem solving, we decom-
pose the investigated problem into two sub-problems. We
propose an algorithm ICOA based on a well-devised DRL
framework and the simplex method to resolve these two
sub-problems. We prove that the time complexity of ICOA
is polynomial.

� We utilize a real dataset to comparatively evaluate the pro-
posed ICOA algorithm. The experimental results demon-
strate that, ICOA performs obtains lower task completion
time and energy consumption than the benchmark algo-
rithms. ICOA achieves the largest approximation ratio to
the optimal algorithm, and requires low runtime.

The rest of this paper is organized as follows. Section II
provides related work. Section III introduces the system model
and formulates the investigated problem. Section IV proposes
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the algorithm ICOA. Section V analyzes the experimental results
of the proposed algorithm, and Section VI concludes this paper.

II. RELATED WORK

In recent years, the MEC has shown broad application
prospects for development, and has attracted extensive attention
from researchers [21], [22], [23]. In this section, we present
the related work on task offloading and resource allocation in
WPMEC, and data compression applied to MEC.

Task offloading and resource allocation in WPMEC: The
problem of task offloading and resource allocation in WPMEC
has recently been widely investigated. A multitude of method-
ologies have been put forth with varying objectives, such as
energy efficiency, delay reduction, fairness or revenue maxi-
mization. Some research [24], [25], [26], [27], [28] focuses on
efficiently allocate the resource to improve channel quality or
energy transmission efficiency. For instance, Cao et al. [24]
proposed a novel performance evaluation index to model the
differential service transmission performance and designed a
collaborative transmission mechanism and joint resource alloca-
tion scheme that combines intelligent reflective surface adaptive
association to solve the coupling performance and resource
management problems. Lu et al. [25] proposed the design of
a wireless power supply MEC system assisted by intelligent
reflectors, introduced the revenue of edge servers as an index
to evaluate the system performance and proposed an iterative
algorithm to maximize the performance revenue of the edge
server. Zhu et al. [26] formulate a joint optimization problem of
wireless charging and computation offloading in socially-aware
D2D-assisted WP-MEC to maximize the utility, characterized
by wireless devices’ residual energy and the strength of so-
cial relationship. Dong et al. [27] proposed a wireless power
transmission time optimization algorithm based on differential
evolution, which designed a hybrid mutation operator and a
disturbance-based binomial crossover operator, while introduc-
ing micro populations to improve optimization efficiency. Wen
et al. [28] innovatively proposed a diffusion-based contract
model designed to incentivize edge devices to contribute re-
sources, thereby supporting high-quality content generation for
users. However, these studies do not consider the collaborative
optimization of task offloading and resource allocation, and also
rely on raw data transmission modes. Some papers consider col-
laborative optimization of task offloading and resource alloca-
tion in WPMEC, focusing on dynamic allocation of computing,
communication, and energy resources, and deeply coupling with
offloading strategies. For example, Malik et al. [29] proposed a
wireless power transfer integrated solution with computation
offloading function, which jointly realizes data partitioning,
time allocation, transmission power control, and satisfies the
maximum feasible proportion of wireless charging requests by
achieving optimal energy beamforming for wireless charging.
Zhong et al. [30] developed a multi-dimensional contract model
based on diffusion models to effectively motivate edge servers
to contribute computational and bandwidth resources, thereby
supporting efficient embodied Artificial Intelligence (AI) twin
migration. Chen et al. [31] studied the wireless charging MEC

system supports full duplex, which improves the efficiency
of energy collection and task offloading by using full duplex
technology on hybrid access points. Popska et al. [32] proposed
an efficient online fairness-aware resource allocation method
for WPMEC networks with TDMA and partial offloading. He
et al. [33] considered minimizing the energy consumption of
MEC networks and designed an Lyapunov-based online algo-
rithm. However, the above studies do not consider data com-
pression, and still incur high communication overhead.

Data compression applied to MEC: Some research focuses on
optimizing the performance of MEC systems by leveraging the
data compression technology, focusing on reducing energy con-
sumption, reducing latency, or improving computing efficiency.
For instance, Cheng et al. [17] studied the data compression
scheme in the edge computing process of multi-user UAVs to re-
duce the energy consumption of wireless devices. Han et al. [18]
considered MEC blockchain networks that support data com-
pression and formulate a nonconvex problem to minimize the
total energy consumption of nodes. Li et al. [19] optimized the
system by jointly optimizing offloading decisions, compression
decisions, transmission power, and computing resources. Tu
et al. [20] studied the energy consumption minimization problem
by jointly optimizing the user’s data compression and offloading
time, transmission power, and task compression and offloading
ratio. Zhang et al. [34] proposed an energy-saving computing
offload algorithm based on deep deterministic policy gradient
to improve accuracy and reduce energy consumption in time-
varying environments. Lai et al. [35] innovatively employed
model compression techniques in resource-constrained mobile
edge networks, thereby enabling efficient AI task offloading.
Zheng et al. [36] studied the computing offload and semantic
compression for intelligent computing tasks in MEC systems to
jointly optimize the system utility. However, the above studies
do not consider the energy benefits brought by wireless charging,
which reduces the sustainability of wireless devices in specific
situations. In addition, these studies either employed the lossy
compression methods or did not incorporate the latest lossless
compression technology, which can lead to the loss of accuracy
or suboptimal compression efficiency. It remains open to explore
more efficient lossless compression mechanisms to improve the
performance of WPMEC.

III. PRELIMINARY

In this section, we first present the models used in the WPMEC
system and subsequently formulate the investigated problem.

A. System Model

As shown in Fig. 1, this paper studies the WPMEC system
model where an edge server (ES) is responsible for providing
wireless edge services to n wireless devices (WDs). The set
of all WDs is denoted by SWDs = {WD1,WD2, . . .,WDn}.
The complete time of the system contains T consecutive time-
frames, each of which has the same length of μ. We use t to
represent the current time-frame. We suppose that the positions
of the WDs remain fixed within each time-frame, but may change
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WPMEC system model.Fig. 1.

Fig. 2. The workflow within a time frame.

across distinct time-frames, thereby introducing different chan-
nel conditions.

In addition, each WD has two working modes: local com-
puting and edge computing. In the local computing mode, WD
directly utilizes wireless charging energy received from edge
servers to complete the computation and processing of task
data locally. In the edge computing mode, WD first uses the
received wireless charging energy to power itself, and then
compresses the task data. The compressed data is transmitted
to the ES through a dynamically changing wireless channel.
After receiving the data, ES will decompress it, perform com-
putational processing, and finally send the resulting data back to
the corresponding target WD. In the edge computing mode, the
workflow within a time frame is illustrated as shown in Fig. 2.

Main symbols and their description used in this paper are
summarized in Table I

B. Communication Model

We assume that data communication adopts the half duplex
mode, and task data offloading and result data returning are trans-
mitted through non-orthogonal multiple access channels. We use
hti(1 ≤ i ≤ n) to represent the wireless channel gain between
ES and WDi and assume that it is fixed within a time-frame
and may vary across different time-frames. According to [5],
we define hti as follows:

hti = ha

(
3 · 108
4πϕdi,s

)γ

Bt
i (1)

TABLE I
SYMBOLS

where ha, ϕ, and γ are the antenna gain, the carrier frequency,
and the path loss index, respectively. di,s is the distance between
WDi and ES. Bt

i is the independent random channel fading
factor. We achieve the transmission speed as follows [37]:

rti = B log

(
1 +

Pih
t
i

N0

)
(2)

whereB is the bandwidth, Pi is the transmission power ofWDi

and N0 is the noise power.

C. Compression Model

Numerous edge computing applications rely fundamentally
on floating-point arithmetic due to its essential role in process-
ing high-resolution, dynamic signals under noisy and resource-
constrained edge environments. In the user behavior analysis
application, the task data includes acceleration, angular velocity,
and positional coordinates, etc. Hence, we assume that all the
task data is composed of floating-point numbers. The task data
is compressed using the Elf method proposed in [13] to achieve
lossless compression before offloading. The basic principle of
compression is to increase the number of suffixes 0 by tail
erasing, and then use the XOR method for compression. For
each time-frame, we can obtain the task data compression rate
αt
i for each WDi, and use Ji to represent the amount of CPU

cycles needed to compress one bit of data. As compressing data
requires local CPU resources, this will lead to an increase in
WDs’ energy consumption. Hence, we need to adjust the data
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compression proportion βt
i reasonably to meet energy feasibility

constraint.

D. Time Model

In the local computing mode, the task complete time ofWDi

can be formulated as:

T t
i,l =

Dt
ici
f li

(3)

where Di is the data size and f li is the local computing rate, ci
represents the amount of CPU cycles needed forWDi to process
1-bit of data.

In edge computing mode, WDs offload their task data to
ES for execution. The process includes five steps: task data
compression, offloading transmission, task data decompression,
edge server execution, and result feedback.

The time of task data compression can be expressed as:

T t
i,com =

βt
iD

t
iJi

f li
(4)

The time of offloading transmission can be expressed as:

T t
i,off =

(1− βt
i )D

t
i + αt

iβ
t
iD

t
i

rti
(5)

The time of task data decompression is expressed as follow:

T t
i,dec =

βt
iD

t
iJES

fES
(6)

where fES is the cycle frequency of the server CPU and JES is
the number of cycles required to decompress one bit of data.

The time of edge server execution can be achieved as:

T t
i,exec =

Dt
icES

fES
(7)

where cES is the amount of cycles needed for the ES to handle
one-bit data.

Due to the very small amount of data in the executed results,
which can be ignored, we reasonably assume that the time for
returning the results is also negligible [19].

The total time in the edge computing mode, obtained by
adding them up, is represented by T t

i,e:

T t
i,e = T t

i,com + T t
i,off + T t

i,dec + T t
i,exec (8)

E. Energy Model

This paper assumes that each WD can convert the wireless
energy signals received from the ES into electrical energy,
which is then stored in a rechargeable battery. We assume that
wireless charging time is μt

c (0 ≤ μt
c ≤ μ). According to [5],

the harvested energy in each time-frame is represented as:

Ct
i = ηtiP

t
ESh

t
iμ

t
c (9)

where ηti and P t
ES respectively represent the energy collection

efficiency and ES’s transmission power within the time-frame
μ. ηti is within the range of (0,1). We use Lt

i to represent the
remaining energy of WDi. Specifically, due to the discreteness

of time-frames, Lt
i is defined as:

Lt
i = Lt−1

i + C
(t−1)
i − Et−1

i (10)

where Et−1
i represents the energy consumed by WDi in time-

frame t− 1. Specifically, based on the characteristics of battery
power supply, Lt

i satisfies Lmin ≤ Lt
i ≤ Lmax, where Lmin is

the minimum remaining energy required to support the normal
operation of WDs, andLmax is the battery capacity. WhenLt

i <
Lmin, WDi will stop working until it obtains enough energy
through wireless charging.

Then, we achieve the energy consumption in the local com-
puting mode as follows:

Et
i,l = aiD

t
ici (11)

where ai is the energy consumed per CPU cycle, usually ex-
pressed as: ai = b(f li )

2, where b is a constant. For each WD, if
it chooses the edge computing mode, its task execution energy
consumption consists of task data compression energy consump-
tion and offloading transmission energy consumption. That is,

Et
i,e = Et

i,com + Et
i,off (12)

where Et
i,com = aiβ

t
iD

t
iJi, and Et

i,off = PiT
t
i,off .

F. Problem Formulation

We define zt = [zt1, z
t
2, . . ., z

t
n] as the decision vector for all

WDs to determine the computing mode. If the WD works in the
local computing mode, then zti = 0, else zti = 1. LetQ represent
the total time it takes for all WDs in the system to complete their
tasks within a time-frame. According to (3) and (8), we can
obtain:

Q(Lt,Dt,ht, μt
c, z

t,βt) =

n∑
i=1

((1− zti)T
t
i,l) + ztiT

t
i,e (13)

where the vectors Lt = [Lt
1, L

t
2, . . . , L

t
n], Dt = [Dt

1, D
t
2,

. . . , Dt
n], and ht = [ht1, h

t
2, . . . , h

t
n] represent the remaining

energy, data sizes, and channel gains of all devices in the system,
respectively.

Unlike existing studies, we can adjust the compression
proportion to regulate the compression energy consumption.
Therefore, the key challenge lies in how to adaptively adjust
both the charging time and the compression proportion under
energy feasibility constraint to optimize the task completion
time. We require to providing decision support for the wireless
charging time μt

c of ES, the offloading decision vector zt =
[zt1, z

t
2, . . ., z

t
n] of WDs, and the data compression proportion

βt = [βt
1, β

t
2, . . ., β

t
n] at the initiation of time-frame t. The goal

is to minimize the sum of task completion time Q, as shown
below:

P : Q∗ = min
μt
c,z

t,βt
Q(Lt,Dt,ht, μt

c, z
t,βt) (14)

s.t. ∀i ∈ {1, . . ., n},

Lt
i + Ct

i − ((1− zti)E
t
i,l + ztiE

t
i,e) ≥ Lmin (15)

μt
c +

n∑
i=1

ztiT
t
i,e ≤ μ (16)
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ICOA algorithm overview.Fig. 3.

0 ≤ μt
c ≤ μ (17)

∀i ∈ {1, . . ., n}, zti ∈ {0, 1} (18)

∀i ∈ {1, . . ., n}, 0 ≤ βt
i ≤ 1 (19)

where (15) represents the constraint for residual energy feasi-
bility, (16) represents the constraint for real-time feasibility, and
(17)–(19) are the range of value for variables μt

c, zti , and βt
i .

Theorem 1: The problem P is a non-convex and NP-hard
problem.

Proof: Due to the discreteness of the variable zti in the
objective function (14) and constraints (15), (16), (18), the
problem P is a non-convex problem. Besides, assuming that
we allocate a fixed amount of resources to each WD, and we
construct a knapsack for every WD, appropriately setting the
weight and value of the knapsack based on the task completion
time associated with that WD, we can effectively reduce the
offloading decision problem to a classic 0-1 knapsack problem.
Since 0-1 knapsack problem is an NP-hard problem, P is also
NP-hard.

IV. ALGORITHM DESIGN

According to Theorem 1, we know that directly solving this
non-convex NP-hard problem is computationally infeasible due
to exponential growth in computational complexity. To reduce
the difficulty of problem solving, we decompose the problem
into two sub-problems:

1) Sub-problem P1 (Online Offloading Decision Vector Set
Generation): At the start of every time-frame, we use
appropriate strategies to generate a set of candidate of-
floading decision vectors.

2) Sub-problem P2: (Online Resource Allocation) At the
start of every time-frame, we allocate charging timeμt

c and
compression proportion βt for every candidate decision
vector.

Through analysis, we can achieve that the original problem P
has a solution (zt∗,β

t
∗, μ

t
c∗) only when both subproblemsP1 and

P2 have solutions zt∗ and (βt
∗, μ

t
c∗), respectively. Any subprob-

lem without a solution will result in the original problem without
a solution. Hence, the decoupled subproblems are equivalent to

the original problem. The decision space for the sub-problemP1
is 2n. In order to reduce the search space while achieving high
efficiency in offloading decision making, we adopt a carefully
designed DNN to generate a set of candidate decision vectors.
For sub-problem P2, after obtaining several candidate decision
vectors, we will solve for their corresponding resource allocation
schemes. We standardize the sub-problem into a standard linear
programming problem and solve it using the simplex method to
obtain the values of μt

c and βt. After the above two steps, we
obtain several solutions. We select the optimal one as the final
solution, and use it to update the DNN. Fig. 3 shows the ICOA
algorithm overview. Our ICOA algorithm consists of three parts
corresponding to the following three subsections.

A. Online Offloading Decision Vector Set Generation

We will solve the sub-problemP1 through the following three
steps:

(1) Relaxed decision vector generation: We carefully design
a three-layer DNN. The DNN adopts the remaining energy Lt,
the task data sizes Dt, and the channel gains ht as inputs at
the beginning of time-frame t and outputs a relaxed decision
vector ẑt, where ẑt ∈ [0, 1]n. This relaxed decision vector can
be expressed as:

ẑt = fωt(Lt,Dt,ht) (20)

where ωt is the weight of the DNN.
(2) Order-preserving quantization: This paper uses the order-

preserving quantization (OPQ) mechanism to generate k of-
floading decision vectors by quantifying ẑt as follows:

fOPQ : ẑt �→ St
OPQ = {ztj |ztj ∈ {0, 1}n, j = 1, 2, . . ., k}

(21)

where St
OPQ is the set of generated offloading decision vectors.

A key feature of the OPQ method is that it maintains the
generation order of vectors during quantization. Specifically,
if ẑti1 ≥ ẑti2 then ztj,i1 ≥ ztj,i2. By setting the appropriate value
for k, we can attain both satisfactory performance and reduced
complexity. Following thorough analysis and validation, k is set
to n in this paper.
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(3) Crossover and variation: We use the crossover and varia-
tion mechanisms to obtain more offloading decision vectors. We
choose n pairs of vectors from St

OPQ and set a random inter-
section point ψ for each selected decision vector pair (zti, z

t
j).

Then, a new decision vector z̆tl is generated using the following
equation:

z̆tl =

{
zti,l 1 ≤ l ≤ ψ

ztj,l ψ ≤ l ≤ n
(22)

When the probability of random generation is not greater
than a variation rate φ, we randomly choose a decision vari-
able z̆ti from z̆tl and update z̆ti to z̆ti − 1. Finally, a decision
vector set SCV can be implemented that contains up to n new
decision vectors. Through the above steps, we can obtain a set
St = St

OPQ ∪ St
CV , which contains no more than 2n candidate

decision vectors. Hence, we compress the search space from 2n

to at most 2n, and significantly reduce the decision search time.

B. Online Resource Allocation Based on Linear Programming

To solve the sub-problem P2, for each žt in the set St, we can
divide all WDs into two sets based on it: the set M of WDs
in the edge computing mode and the set N ofWDs in the local
computing mode. We substitute žt into the (13). Combining
(3)-(8), the (13) can be expanded into the following equation:

Q =
∑
i∈M

Dt
i

(
Ji
f li

+
αt
i − 1

rti
+
JES

fES

)
βt
i

+
∑
i∈M

(
Dt

i

rti
+
Dt

icES

fES

)

+
∑
i∈N

T t
i,l (23)

The constraints (15) and (16) can be expanded as:

ηtiP
t
ESh

t
iμ

t
c −Dt

i

[
aiJi +

Pi(α
t
i − 1)

rti

]
βt
i

+ Lt
i −

PiD
t
i

rti
− Lmin ≥ 0 (24)

μt
c +

∑
i∈M

Dt
i

(
Ji
f li

+
αt
i − 1

rti

)
βt
i

+
∑
i∈M

(
Dt

i

rti
+
Dt

icES

fES

)
− μ = 0 (25)

It is not difficult to see that the (23) and constraints (24), (25),
(17)–(19) are all linear combinations of variables μt

c and βt.
For the convenience of description, we use some symbols to
represent some sub terms in (23)–(25):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gi = Dt
i(

Ji

f l
i

+
αt

i−1

rti
+ JES

fES
)

Hi = −Dt
i [aiJi +

Pi(α
t
i−1)

rti
]

Ki = ηtiP
t
ESh

t
i

Ii = Dt
i

(
1
rti

+ cES

rti

)
Oi = Lt

i −
PiD

t
i

rti
− Lmin

(26)

Then, we will obtain some coefficient matrices:

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

K1 H1 0 0 . . 0
K2 0 H2 00

.. .. ..

.... ..
.... 0

K|M| 0 . .. 0 H|M|

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

where A′ is a (|M| × (|M|+ 1)) matrix. The other matrix is
as follows:

c = [0, G1, G2, . . ., G|M|]
T (28)

b1 = [O1, O2, ..., O|M|]
T (29)

q = [1, G1, G2, . . ., G|M|] (30)

r = [μ, 1, 1, . . ., 1]T (31)

θ =
∑
i∈M

Ii − μ (32)

After that, we can express the sub-problem P2 as:

min
X1

cTX1 +
∑
i∈M

(
Dt

i

rti
+
Dt

icES

fES

)
+
∑
i∈N

T t
i,l (33)

s.t. A′X1 + b1 ≥ 0 (34)

qX1 + θ = 0 (35)

0 ≤ X1 ≤ r (36)

where X1 = [μt
c, β

t
(1), β

t
(2), . . ., β

t
(|M|)]

T is a vector consisting
of multiple optimization variables for sub-problem P2, and βt

(i)

is the compression proportion corresponding to each 1in žt.
In order to solve the problem by using linear program-

ming methods, we must standardize it. We denote X =
[μt

c, β
t
(1), β

t
(2), . . ., β

t
(|M|), x1, x2, . . ., x

t
2|M|+1]

T as optimiza-
tion variable, and xi is the introduced relaxed variable. Af-
ter omitting last two constant term in (33) and let c =
[0, G1, G2, . . ., G|M|, 0, . . ., 0]

T , the original problem can be
transformed as follows:

min
X

cTX (37)

s.t. AX+ b = 0 (38)

X ≥ 0 (39)

where A is a coefficient matrix and b is a constant vector, which
can be represented as:

A =

⎡
⎣ −A′ E1 0

q 0 0
E2 0 E2

⎤
⎦ b =

⎡
⎣ −b1

θ
−r

⎤
⎦ (40)

where E1 and E2 are identity matrices with dimensions of
(|M| × |M|) and ((|M|+ 1)× (|M|+ 1)), we can know that
A is a matrix with dimensions ((2|M|+ 2)× (3|M|+ 2)).

Then, the problem becomes a standard linear programming
problem. In short, it can be solved by the simplex method.
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Through the above steps, we could obtain several solutions:

St
f = {(zt1,βt

1, μ
t
c1), (z

t
2,β

t
2, μ

t
c2), . . ., (z

t
s,β

t
s, μ

t
cs)} (41)

Then we select the optimal solution (zt∗,β
t
∗, μ

t
c∗) to the original

problem. Since we aim to optimize the overall time, we conduct
the chosen operation according to the Q. Hence, the solution
(zt∗,β

t
∗, μ

t
c∗) with the optimal value Q∗ will be chosen as the

optimal one:

(zt∗,β
t
∗, μ

t
c∗) = argmin

(zt
j ,β

t
j ,μ

t
cj)∈St

f

Q∗(Lt,Dt,ht, μt
c, z

t,βt) (42)

C. DNN Updating Based on Experience Replay

The last part of the algorithm is the updating of DNN. We will
combine the obtained optimal decision vector zt∗ with the input
data of the algorithm at the beginning of the time-frame to form
a data sample vector (Lt,Dt,ht, zt∗) and replay it into a replay
memory of size |Y |. We denote the replay memory as STF . In
this way, a data sample will be placed when the replay memory is
full at each time-frame. In this paper, the DNN training utilizes
the random replay technique. When the system time experiences
an interval ϑ, randomly select some data sample vectors from
the replay memory, and the selected set of data sample vectors
is represented as St

DS = {(Lti,D
ti,hti, zti∗ )|ti ∈ STF }. This

paper uses the Adam [38] algorithm to train and update DNN
parameters. We use ξ to denote the learning rate, and the cross
entropy loss function is:

Loss = − 1

|St
DS |

∑
t∈STF

[(zt∗)
T log fωt(Lt,Dt,ht)

+ (1− zt∗)
T log(1− fωt(Lt,Dt,ht))] (43)

This process will continue until convergence.
The pseudocode of the algorithm including the above steps is

shown in Algorithm 1. In this algorithm, lines 4-7 correspond to
the first module in Fig. 3, lines 8-11 correspond to the second
module, and lines 12-15 correspond to the third module.

D. Time Complexity Analysis

Theorem 2: The ICOA algorithm has the time complexity
of at most O((m1(n+m2)) + n3 + |Y |) in each time-frame,
where m1 and m2 represent the number of neurons in the two
hidden layers of the DNN, and |Y | is the size of replay memory.

Proof: The main complexity of the ICOA algorithm in each
time-frame is analyzed as follows. The line 4 is the generation
of the relaxed offloading action vector based on the DNN. We
can analyze that this step takes at most O(m1(n+m2)) to
run. The runtime of the OPQ mechanism is at most O(n2).
The crossover and variation in line 6 requires at most O(n)
time. The time complexity of traversing the set and using linear
programming method in lines 8-10 is O(n3). Line 11 demands
at most O(n) time for execution. The lines 12-15 requires the
maximum runtime of O(|Y |). In summary, we can obtain that
this theorem holds.

Algorithm 1: ICOA Algorithm.

V. PERFORMANCE EVALUATION

A. Simulation Setting

The experiments are evaluated based on a publicly available
real dataset, referred to EUA [39]. The dataset comprises the
geographical coordinates of mobile subscribers and base stations
in Melbourne, Australia. We choose the location of a base station
as the location of ES, andn user locations around the base station
as the locations of WDs. Furthermore, we select three benchmark
algorithms for comparison:
� DROO [5]: This algorithm utilizes the DRL and OPQ to

generate candidate decision vector.
� EAOO [12]: This algorithm utilizes the OPQ, crossover

and variation mechanisms to generate candidate decision
vectors. However, it does not utilize data compression.

� LOCAL: This algorithm relies entirely on local computing.
Table II lists the range of values of the evaluation parameters

used in these experiments.

B. Impact of Bandwidth

Fig. 4(a) shows the average task completion time of the four
algorithms when the bandwidth is increasing. We can observe
that the average task completion time of the DROO, EAOO, and
ICOA algorithms is decreasing, and the LOCAL task completion
time remains unchanged. This is because as the bandwidth
increases, the data transmission speed also increases, which
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TABLE II
EVALUATION PARAMETER SETTINGS

Fig. 4. Task completion time and energy consumption under different channel
bandwidths

reduces the offloading transmission time and, consequently,
the total task completion time. The LOCAL algorithm remains
unchanged because it executes the task entirely locally. There-
fore, it is not affected by the increase in bandwidth. Our ICOA
algorithm is the most effective due to the introduction of data
compression which reduces the amount of data transmitted.
When the bandwidth reaches a certain value 5 MHz, ICOA,

Task completion time and energy consumption under different numberFig. 5.
of devices.

DROO and EAOO have the same effect, this is because as the
bandwidth increases, the decrease in data size is not enough to
compensate for the time consumed by data compression itself,
which encourages ICOA to choose not to compress at higher
bandwidth.

As the bandwidth continues to increase, the average energy
consumption of the four algorithms is shown in Fig. 4(b). We
can see that when the bandwidth is less than 5 MHz, the energy
consumption of ICOA is lower than that of other algorithms.
This is because transmission energy consumption makes up the
majority of total energy consumption, and data compression can
effectively reduce it.

C. Impact of the Number of Devices

We compare the performance of four algorithms with the
increasing of the number of devices. We increase the number of
devices from 8 to 18 and observe their average task completion
time and energy consumption, as shown in Fig. 5(a) and (b),
respectively. We can see that as the number of devices increases,
the average task completion time and energy consumption of
the four algorithms also increase. This is because the greater the
number of devices, the more tasks need to be completed, which
leads to increased time and energy consumption. We can see that
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Fig. 6. The runtime of ICOA algorithm.

our algorithm outperforms the other three benchmark algorithms
in terms of task completion time and energy consumption. This
is because we have introduced data compression, which not only
reduces data transmission time but also greatly reduces energy
consumption during task offloading transmission.

D. Running Time

In this section, we examine the impact of the number of
devices and the size of the replay memory on the algorithm’s
running time at each time-frame. From Theorem 2 we know
the time complexity of ICOA algorithm is O((m1(n+m2)) +
n3 + |Y |). Fig. 6(a) shows the variation of the running time of
the algorithm as the number of devices continues to increase.
We can see that as the number of devices increases from 8 to 28,
the maximum running time of the algorithm does not exceed 35
milliseconds. Fig. 6(b) shows the variation of the running time
with the size of the replay memory. We can see that its impact on
the running time is relatively small. Therefore, we can observe
that our ICOA algorithm meets the real-time requirement.

E. Impact of the Size of Data

Fig. 7 clearly indicates that, as the data size of the task
increases, all algorithms generate more task completion time and

Fig. 7. Comparison of task completion time and energy consumption in
different data sizes.

energy consumption. This is because the larger the task size, the
more computation is required for each task, resulting in more
energy consumption and more task completion time. Among all
four algorithms, we can observe that our ICOA algorithm has the
least task completion time and energy consumption compared
to other competing algorithms.

F. Impact of Different Compression Algorithms

In this section, we test the impact of using different compres-
sion algorithms on task completion time and energy consump-
tion. The four compression algorithms are:
� Elf [13]: A lightweight floating-point compression algo-

rithm based on delta encoding and variable-length integer
compression, which dynamically adjusts window sizes to
achieve low-overhead data reduction.

� Chimp128 [14]: An enhanced 128-bit streaming compres-
sion algorithm that detects data patterns through XOR op-
erations and combines leading-zero counting with dynamic
bitmasking for high compression ratios.

� Chimp [14]: A real-time floating-point compression
method using XOR-based pattern matching, which
compares neighboring values via a sliding window and
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Fig. 8. Comparison of task completion time and energy consumption in
different compression algorithms.

employs leading/trailing zero prediction with variable-
length encoding for fast lossless compression.

� FPC [15]: A hardware-optimized floating-point compres-
sor utilizing a three-stage pipeline (scalar quantization, bit-
plane splitting, and entropy coding) to enable high-speed
lossless compression for scientific datasets.

We test 3000 time-frames and take the average results of
every 500 time-frames as the final results, which are shown in
Fig. 8. We can observe that, when Elf is used, the algorithm has
the lowest task completion time and energy consumption. This
is because Elf has the best compression effects among all the
compression algorithms.

G. Impact of Max Computing Rate

As illustrated in Fig. 9, an investigation was conducted to
assess the impact of the max computing rate variation of the
device on the performance of four distinct algorithms. It is
evident that, as the max computing rate of the device increases,
the total task completion time of four algorithms exhibits a
notable decline, whereas the energy consumption rises consid-
erably. This phenomenon can be attributed to the fact that as the

Fig. 9. Comparison of task completion time and energy consumption in
different max culculate rate of devices.

computing rate rises, the time required for tasks to be computed
locally is significantly reduced. However, the computing energy
consumption is positively correlated with the computing rate,
and thus an enhancement in the computing rate also entails an
increase in energy consumption.

H. Approximate Ratio

In this section, in order to clarify the relationship between
our method and the theoretical optimal solution, we evaluate
the approximation ratio σ of our algorithm ICOA at different
time-frames and compare it with three benchmark algorithms.
We define the approximation ratio as follows:

σ =
Q∗

enum(Lt,Dt,ht, μt
c, z

t,βt)

Q∗(Lt,Dt,ht, μt
c, z

t,βt)
(44)

where Q∗
enum is the theoretical optimal value obtained by the

enumeration method. This indicates that the closer the approx-
imation ratio is to 1, the better the algorithm performs. From
the Fig. 10, We can see that our ICOA algorithm significantly
outperforms the benchmark algorithms, and achieves an ap-
proximate ratio above 0.8. Moreover, our ICOA algorithm can
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Approximate ratio comparison of four algorithms.Fig. 10.

Fig. 11. Training loss of DNN.

sometimes achieve an approximate ratio of 1, which indicates
that its performance is near optimal.

I. Training Loss

We analyze the training loss of ICOA with varying param-
eters. This paper presents a measurement of the training loss

at varying learning rates, as illustrated in Fig. 11(a). From this
figure, we can observe that the maximum learning rates of 0.01
and 0.0001 result in a significant deviation in the performance
curve, whereas a learning rate of 0.001 produces the most
stable performance. All of the aforementioned curves ultimately
converge to a value of approximately 0.2. Subsequently, the size
of the relay memory is modified, and the resulting experimental
outcomes are illustrated in Fig. 11(b). ICOA exhibits disparate
convergence curves contingent on the relay memory size. It
is evident that a memory size of 256 culminates in the most
stable convergence curve, whereas other replay memory sizes
can engender considerable performance jitter. This phenomenon
can be attributed to the fact that smaller relay memory sizes
can precipitate frequent updates of data samples, whereas larger
relay memory sizes can give rise to delayed updates, both of
which are inimical to convergence performance.

VI. CONCLUSION

This paper proposes an adaptive intelligent compression of-
floading algorithm ICOA for WPMEC. The ICOA algorithm
fully utilizes the lossless data compression technique to effec-
tively improve the efficiency of the task offloading process. The
DRL technique and the simplex method are adopted to well
resolve the joint optimization problem of offloading decision
generation, charging time allocation and compression ratio al-
location. The simulation results on a real dataset show that, the
proposed ICOA algorithm has significant advantages in reducing
task completion time and energy consumption. Furthermore,
ICOA algorithm can achieve near optimal performance with
low runtime, providing strong technical support for satisfying
the real-time and efficiency requirements of WPMEC. In future,
we will consider optimizing the other performance metrics (such
as throughput and energy consumption) by introducing adaptive
power control algorithms under adjustable power conditions.
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