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Abstract—The effective management of trajectory data heavily
relies on the utilization of fundamental spatio-temporal queries.
The surge in trajectory data, with its dynamic spatio-temporal
properties, poses notable management challenges. Existing sys-
tems are inadequate in providing fine-grained trajectory repre-
sentations and efficient architecture for processing queries, lead-
ing to significant computational overhead. This paper introduces
TMan to address these challenges. First, TMan presents two
innovative index structures that precisely capture the spatio-
temporal characteristics of trajectory data. Compared to the
state-of-the-art indexes, our indexes for temporal range and
spatial range queries can reduce the number of retrievals by up
to 77% and 83%, respectively. Next, TMan devises concise and
effective encoding methods for these indexes. Leveraging these
indexes, TMan provides a distributed storage structure and an
index caching mechanism for efficiently managing trajectories
in key-value data stores. Moreover, TMan introduces a parallel
query processing approach incorporating a push-down strategy
to enhance the efficiency of fundamental queries. Extensive
experimental results demonstrate that TMan’s index structures
and architecture outperform the baselines.

I. INTRODUCTION

Trajectory data has seen a surge in applications due to the
extensive use of GPS and other location-based technologies.
For example, more than 1TB of trajectory logs are generated
daily by 60,000 JD Logistics couriers [1]. Consequently,
the urgent need for efficient systems to manage large-scale
trajectory data is evident. Key-value data stores are commonly
used for storing vast amounts of data due to their scalability
and ability to quickly lookup data within extensive datasets.
However, it is a challenging task for trajectory data manage-
ment. On the one hand, trajectory data has a complex structure,
but lacks fine-grained representation. On the other hand, the
query scenarios required by applications are diversified, so that
the system must efficiently support various query types.

Fine-grained representation. Trajectory data consists of a
sequence of locations with timestamps, forming a temporal
range and an irregular spatial shape. These spatio-temporal
features play a crucial role in trajectory analysis tasks.
Databases usually employ one-dimensional structures for data
storage. Hence, it is essential to convert these features into
one-dimensional representations using indexing techniques.

Temporal feature. The temporal information of a trajectory
refers to a time range that starts from the beginning to the
*The research was done when the first author was an intern at JD iCity, JD
Technology, China and JD Intelligent Cities Research. Yu Zheng and Tianrui
Li are the corresponding authors.

end of the trajectory. Most indexes provided by databases
only index a time point rather than a time range. TrajMesa
[2] introduces an advanced temporal index called XZT index.
It uses the dichotomy to divide a big time period into mul-
tiple Elements with various resolutions. However, the use of
dichotomy leads to a maximum of 1/2 dead region, which
hinders the efficiency of queries (Section II-1 provides exam-
ples). Additionally, some approaches directly use multiple time
periods to represent time ranges. It stores a trajectory multiple
times, resulting in significant redundancy. Hence, it requires a
more accurate time range index without redundant storage.

Spatial feature. Locations visited by a trajectory contain
spatial information, such as the shape of the trajectory. Spatial
indexes aim to capture the spatial characteristics of trajectories
by encompassing them in index spaces. The index values of
index spaces are used to manage trajectories. R-tree and its
variants [3]–[8] are commonly used spatial indexes. However,
they inevitably suffer considerable overhead in adjusting and
maintaining their index structures when managing large data,
making them uncomfortable for key-value databases. In recent
years, systems [2], [9]–[11] have employed XZ-ordering index
to represent trajectories. XZ-ordering extends the principles
of a quad-tree to generate enlarged elements with various
resolutions. It uses the smallest enlarged element to represent
trajectories. However, enlarged elements are rectangles that
cannot accurately depict the shape of trajectories. Extended by
XZ-Ordering, [12] proposes XZ* index. It divides an enlarged
element into four sub-quads and uses non-rectangle index
spaces formed by sub-quads to represent trajectories. Never-
theless, XZ* can only coarsely represent trajectory shapes.

Supporting various query types. Applications require
various trajectory queries, such as temporal range queries,
spatial range queries, and similarity queries. Therefore, it is
necessary to devise an efficient storage schema and query
processing techniques to accommodate as many queries as
possible. Built on HBase, TrajMesa [2] and VRE [11] support
multiple trajectory queries. TrajMesa provides diverse spatio-
temporal indexes tailored to different query scenarios. It stores
a trajectory in multiple index tables, leading to significant data
redundancy. VRE introduces a segment-based storage model
that sets the commonly used index as the primary table and
stores other indexes in secondary index tables. However, it
requires segmenting trajectories, which breaks their integrity.
As a result, a large amount of reassembly overhead is required
to reconstruct a whole trajectory. Thus, there is an urgent



need for a spatial index that can store intact trajectories while
mitigating storage redundancy.

Our solution. We propose TMan (A High-Performance
Trajectory Data Management System Based on Key-value
Stores) to address the limitations mentioned above. TMan
proposes two novel index structures and encoding methods
to convert the spatio-temporal features of trajectories into
one-dimensional values precisely. Moreover, TMan devises a
storage scheme, an index cache mechanism, and corresponding
query processing techniques to support trajectory queries.

TR index. The time ranges of trajectories vary in length.
TMan represents time ranges using time bins consisting of
k consecutive time periods, where k can be adjusted by the
length of each time range. In contrast to XZT, the time
period in TMan is very short, e.g., 30mins. A larger time
bin corresponds to longer time ranges. Instead of repeatedly
storing a trajectory in any intersecting time period, TMan
devises an elegant and efficient encoding formula to avoid
redundant storage. It assigns a distinct integer value to each
time bin while endeavoring to ensure that adjacent index
values correspond to time bins as near as possible. The
encoding of our index remains fixed and concise (Equation 1),
regardless of the data volume, and the computational overhead
is negligible, making it highly suitable for distributed systems.

TShape index. To better represent the spatial features of tra-
jectories, TMan proposes TShape index. Trajectory shapes are
irregular, but conventional indexes can only depict the MBRs
(minimum bounding rectangle) of trajectories. However, an
MBR is too coarse to portray the shape of a trajectory. Thus,
TShape index is devised to delineate the irregular shapes of
trajectories using index spaces composed of multiple cells with
variable shapes. TShape index selects an optimal combination
of cells to represent the spatial shape of a trajectory, thereby
enabling better differentiation of the spatial characteristics
among different trajectories. Generally, if index spaces with
high spatial correlation possess more adjacent index values,
executing spatial queries can effectively get more related
trajectories in a single I/O operation, reducing I/O overhead
and improving query efficiency. Thus, TMan proposes a novel
encoding approach, proving that this encoding is a traveling
salesman problem (TSP, an NP-hard problem). TMan uses
the greedy algorithm and genetic algorithm to implement this
encoding. Therefore, TShape index can meticulously represent
the spatial shapes of trajectories with fine-grained index spaces
and store spatially correlated trajectories closer.

Storage. As TMan possesses strong representative capabili-
ties, there is no need to split a trajectory into numerous small
segments without practical semantics during storage. In TMan,
a trajectory can be entirely stored in a single row, guarantee-
ing data integrity and reducing reassembly overhead during
query processing. Additionally, TMan adopts a design with
primary and secondary tables to accommodate diverse queries
and reduce storage redundancy. Furthermore, TMan provides
an index caching mechanism that substantially reduces the
computation time of invalid index values.

The contributions of this paper are summarized as follows:

• We devise a concise and efficient temporal index called TR
index. It represents time ranges of trajectories with suitable
time bins and provides an encoding method to store them
without redundancy. For temporal range queries, TR index
can reduce the number of retrievals by up to 77%.

• We propose TShape index to portray the irregular shapes
of trajectories using index spaces with variable shapes.
Moreover, we prove that the encoding of TShape index is a
TSP problem, and we solve it by the greedy algorithm and
genetic algorithm. For spatial range queries, TShape index
can reduce up to 83% of retrievals than XZ-Ordering.

• We provide a storage schema that stores intact trajectories
instead of segments. Furthermore, with the careful design of
the index cache mechanism and efficient query processing
framework, TMan push-down queries into the storage layer
and achieves the best performance than baselines.
The rest of this paper is introduced as follows. Section II

reviews related trajectory management systems. Section III
displays the overview of TMan. Section IV introduces the
design of indexes and storage schema. Next, Section V gives
query processing techniques for basic queries. We evaluate our
work in Section VI and draw conclusions in Section VII.

II. RELATED WORKS

We review related works in 1) temporal indexes; 2) spatial
and spatio-temporal indexes; and 3) trajectory systems.

1) Temporal Indexes: Like ST-Hadoop [13], a commonly
used approach is partitioning time into adjacent and disjoint
time bins with a fixed time period. However, a large dead re-
gion would be formed if the time period is too big. Conversely,
a small time period could not encompass numerous time
ranges, such that a trajectory may be stored in intersecting time
periods with a copy, leading to redundant storage overhead and
deduplication computation. VRE [11] divides trajectories into
segments based on a time duration d, and it only uses the start
time to index trajectory segments. When performing a time
range query q = [ts, te], it is necessary to inspect all segments
with a start time located at [⌊ ts

d ⌋ ∗ d, te], Figure 1(a) gives
an example. This design has two limitations. 1) It requires
segmenting trajectories, which breaks their integrity. As a
result, a large amount of reassembly overhead is required to
reconstruct a whole trajectory; 2) When the value of d is small,
it may need to access a large number of irrelevant trajectory
segments. TrajMesa [2] proposed XZT index. Firstly, XZT
divides time into time periods with a big fixed period (e.g.,
two weeks). Next, it divides each time period into elements
using the rule of dichotomy. Then, each element is doubled to
get an XElement. For a time range T.tr, XZT index selects the
smallest XElement that covers T.tr to represent T.tr. However,
the dead region of XZT index could also be big for a trajectory
with a long time range. Figure 1(b) shows an example.

TR index is proposed to improve the precision for repre-
senting time ranges and avoid duplicated storage. It uses a
time bin consisting of small time periods to represent the time
range of a trajectory and design a graceful encoding for the
time bin instead of duplicated storage (cf. Section IV-A1).
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2) Spatial and Spatio-Temporal Indexes: Dynamic indexes
(e.g., R-tree and its variants [3]–[8]) require much overhead
to maintain their index structures when managing a large
number of trajectories. Hence, these indexes are uncomfortable
for key-value databases. XZ-Ordering [14] is widely used to
index trajectories in systems based on key-value databases,
including GeoMesa [9], TrajMesa [2], [15], JUST [10], and
VRE [11]. XZ-Ordering divides the entire spatial region into
grids with different resolutions. Next, each grid is doubled as
an enlarged element. XZ-ordering uses the smallest enlarged
element to represent the MBR of a trajectory. As depicted
by the red lines in Figure 2(a), the girds labeled as ‘03’
and ‘310’ are doubled to generate their enlarged elements.
Extended by XZ-Ordering, TraSS [12] proposes XZ* index. It
divides the enlarged element into four sub-quads and employs
the combination of these sub-quads as an index space to
represent the shapes of trajectories. As illustrated in Figure
2(b), XZ* index uses the combinations of ‘ac’ and ‘abd’ to
represent trajectories T1 and T2, respectively. Nevertheless,
these indexes can only coarsely represent trajectory shapes.

[16] proposes a 3D R-tree that treats temporal information
as the third dimension. However, this approach is unsuited for
indexing trajectories with long time ranges [17]. HR tree [7]
and H+R tree [8] divide the time dimension into disjoint time
periods and build a spatial index within each period. How-
ever, these dynamic indexes suffer from maintainability and
scalability problems, making them unsuitable for key-value
databases. CSE-tree [18] uses grids to segment trajectories.
Within each grid, it builds two B+trees based on trajectory
segments’ start and end times. Similar to VRE, this approach
breaks the integrity of a trajectory and may miss the results
of temporal range queries.

We propose TShape index to represent irregular shapes
of trajectories elaborately (Section IV-A2). In addition, we
present ST index for spatio-temporal queries (Section IV-A4).

3) Trajectory Management Systems: TrajStore [19] and
Torch [20] are single machine-based systems that suffer from
scalability problem. MobilityDB [21] is extended on Post-
greSQL [22] with PostGIS [23]. It implements the GiST and
SP-GiST indexes on R-tree for supporting spatio-temporal
queries. ST-Hadoop [13], Summit [24], and PRADASE [25]
process massive trajectories based on MapReduce framework,
which requires an amount of I/O operations. UlTraMan [26],
DITA [27], DFT [28], ST4ML [29], and REPOSE [30] are
distributed in-memory systems. They are uneconomical in
managing massive trajectory data. Simba [31], GeoSpark [32],
and LocationSpark [33] can handle spatial objects but lacks
supporting spatio-temporal data. [2], [9]–[12], [15], [34]–[36],
[36]–[38] are based on NoSQL. THBase [39], TrajMesa [2],
and VRE [11] are built on HBase. However, THBase does not
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Fig. 3. Overview of TMAN.

optimize the trajectory storage. TrajMesa stores a trajectory
multiple times in different index tables, which causes big stor-
age costs. VRE stores segments instead of intact trajectories,
which breaks the integrity of trajectories.

Benefiting from the strong representative capabilities of our
indexes, TMan can store an intact trajectory in a single row.

III. SYSTEM OVERVIEW

Figure 3 gives the overview of TMan. It contains two core
layers: storage layer and query processing layer.

Storage Layer. We employ primary and secondary tables to
accommodate diverse queries and minimize redundant storage.
Key-value data stores use one-dimensional key-value pairs to
store data. The efficiency of trajectory queries heavily depends
on precisely converting the spatio-temporal features of tra-
jectories into one-dimensional encoding. To accomplish this,
we introduce four indexes to accurately represent trajectory
features. Additionally, we aim to retain the spatio-temporal
features during encoding. When storage, trajectories are stored
in primary tables, while the mappings of other indexes to
the primary table are stored in secondary tables. Moreover,
trajectories consist of multiple points, and consecutive points
often exhibit similar features. Thus, TMan utilizes lossless
compression to compress trajectories into bytes. Simultane-
ously, the dp-feature [12] is used to retain the representative
features of trajectories. Finally, TMan incorporates an index
cache mechanism to improve query processing efficiency.

Query Processing Layer. TMan provides efficient query
processing capabilities to efficiently support various basic
queries, such as spatial range query, ID temporal range queries,
spatio-temporal range queries, and similarity queries. When a
query is received, TMan generates the optimal query planner
based on the Rule-Based Optimizer (RBO) and Cost-Based
Optimizer (CBO). Next, TMan pushes down filters into rele-
vant table regions and executes the query in parallel.



IV. STORAGE LAYER

To efficiently manage large-scale trajectory data, TMan
utilizes key-value data stores to support fundamental queries.
However, two challenges need to be addressed.

Firstly, trajectories are multi-dimensional spatio-temporal
data, and many queries highly rely on their spatio-temporal
features. However, key-value databases store data using one-
dimensional key-value pairs. Therefore, it is necessary to de-
velop efficient indexing techniques that accurately capture the
spatio-temporal features of trajectories. Moreover, encoding
methods need to convert features to one-dimensional values.
The primary spatio-temporal features of trajectories include
time ranges and spatial shapes. To accurately represent these
features, we devise TR index (Section IV-A1) and TShape
index (Section IV-A2). Furthermore, we develop concise and
efficient encoding methods for these indexes to preserve
spatio-temporal properties of trajectories during storage.

Secondly, different query types require different indexes. To
avoid redundancy, TMan uses primary and secondary tables
with different indexes to manage trajectories. Moreover, we
employ an index cache mechanism to enhance query perfor-
mance and avoid unnecessary computations (Section IV-B).

A. Indexing and Encoding

TMan provides four fundamental indexes to support queries
efficiently: 1) TR index, a static temporal range index, assigns
integer values to the time ranges of trajectories, enabling
efficient temporal range queries (Section IV-A1); 2) TShape
index, a novel spatial index, uses non-rectangular index spaces
to represent the spatial features of trajectories, avoiding re-
trieving many irrelevant trajectories during query processing
(Section IV-A2); 3) IDT index combines IDs of trajectories
and TR indexes to support ID-temporal range queries (Section
IV-A3); 4) ST index (Section IV-A4) supports spatio-temporal
range queries by merging TR and TShape indexes.

1) TR Index: Temporal range query (TRQ) retrieves all
trajectories that intersect a given time range, which is crucial
in various fields, such as analyzing the movement patterns of
objects in a specific time duration. TR index is designed to
support TRQ efficiently. A trajectory T spans a time range
[ts, te] that starts from the time of the start point to that of
the end point. TR index aims to: 1) use subtle time bins to
represent time ranges of trajectories and 2) encode the time
bins to partition trajectories with adjacent time ranges nearly.
Index Structure of TR index. The main idea of TR index
is to combine small time periods as an index space. Initially,
the timeline is divided into adjacent and disjoint time periods
with a fixed length (e.g., an hour). Given a time range
T.tr = [ts, te], ts and te are locate in the i-th and j-th time
periods, respectively. Thus, we use the time bin from the i-
th time period to the j-th time period to represent T.tr. As
shown in Figure 4, we use (j − i+ 1) time periods as a time
bin to represent the time range T.tr.
Encoding of TR index. Key-value data stores use the form of
key-value pair to store data. Thus, we allocate each time bin to
a unique integer value. The goal of our encoding is to assign
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Fig. 4. Examples of TR Index.

adjacent time ranges to as many near values as possible. Before
drilling into the details, we first give some related definitions.

Definition 1. (TPi: Time Period). TR index divides a timeline
into adjacent and disjoint time periods by a fixed length. We
use TPi to represent the i-th time period.
Definition 2. (TBi,j: Time Bin). TBi,j is a time bin starting
from the i-th time period to j-th time period. Note that i ≤ j.

As the time is infinite, we set the start time of the timeline
to that of the UNIX system, i.e., 1970-01-01 00:00:00. The
number of time bins that starts from a time period is unlimited,
causing the encoding space to be infinite. Thus, we set N as
the number of the maximum periods that a time bin covers
to limit the encoding space. Therefore, for a time bin TBi,j ,
we have i ≤ j ≤ i + N − 1. In fact, after preprocessing,
almost all trajectories do not have a time range longer than 48
hours. Hence, if the time period is 1 hour, N does not need to
exceed 48. N can also be configured by users for flexibility.
For a temporal range query q, if a time period TPi intersects
with q, all time bins T B = {TBi,k|i ≤ k ≤ i + N − 1}
starting from TPi intersect with q, thereby T B are candidates
for q. Therefore, we first encode the time bins starting from
the same time period TPi one by one. Next, we encode time
bins starting from the next time period TPi+1. Thus, the index
value for time bin TBi,j is as follows:

TR(TBi,j) = i ∗N + j − i. (1)
Discussion. Although the encoding formula is concise, it
ensures the uniqueness of the encoding and guarantees that
adjacent time bins are also adjacent.
Lemma 1. Index values of two adjacent time bins from the
same time period are contiguous, i.e.,

TR(TBi,j) + 1 = TR(TBi,j+1).

Lemma 2. Index values of time bins starting from adjacent
time periods are contiguous, i.e.,

TR(TBi,i+N−1) + 1 = TR(TBi+1,i+1),

and their maximum interval is 2N − 1, i.e.,
TR(TBi+1,i+N )− TR(TBi,i) = 2N − 1.

Proof. It is easy to conclude these lemmas by Equation 1.
2) TShape Index: A trajectory contains a set of consecutive

spatio-temporal points, which forms an irregular shape. Thus,
we propose TShape index to assign appropriate codes to
represent the shapes of trajectories.
(1) Index Structure of TShape Index. Inspired by XZ* index,
TMan proposes TShape index. Firstly, a cell is recursively
divided into four sub-cells with a higher resolution using
the rule of quad-tree. Figure 5(a) illustrates cells at various
resolutions. Next, an enlarged element is formed by using α∗β
cells at the same resolution, and the combination of cells is
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Fig. 5. Examples of TShape Index.

utilized as an index space to depict the shape of a trajectory.
Figures 5(b) and (c) show examples. When α ∗ β is 2 ∗ 2, T1

and T2 are represented by three cells in the second resolution,
while T4 is represented by two cells in the third resolution.
When α ∗ β is 3 ∗ 3, T1 and T2 can be finely represented by
five cells in the 3rd resolution.

Trajectories vary in size, and cell size changes with reso-
lution, making it inconvenient to represent large trajectories
with α ∗ β cells at a high resolution and impractical to
represent small trajectories with α∗β cells at a low resolution.
Therefore, for a given trajectory T , we first determine the
largest resolution that includes an enlarged element covering
T . To simplify the process, we normalize the height and width
of the spatial range to [0, 1]. An MBR is denoted by its lower
left and upper right corners ((x1, y1), (x2, y2)). Assuming that
the appropriate resolution for an MBR of a trajectory is r.
Lemma 3. r = l or l−1, l = ⌊log0.5(max{x2−x1

α , y2−y1

β })⌋.

Lemma 4. Let w = h = 0.5l, if ⌊x1

w ⌋ ∗ w + α ∗ w ≥ x2 and
⌊y1

h ⌋ ∗ h+ β ∗ h ≥ y2, then r = l, otherwise, r = l − 1.

Proof. The width and height of an enlarged element at r-
resolution are α∗w1 and β∗h1, respectively, where w1 = h1 =
0.5r. The width and height of the MBR are w2 = x2 − x1

and h2 = y2 − y1, respectively. The enlarged element must
cover the MBR, so w2 ≤ α ∗ w1 and h2 ≤ β ∗ h1. Thus,
r ≤ ⌊log0.5(max{x2−x1

α , y2−y1

β })⌋ = l. However, there
are MBRs whose widths are lower than α ∗ 0.5l, but they
cross more than α cells at l-resolution on the x axis. These
MBRs must be represented by a lower resolution, specifically
l − 1. The lower left corner of the MBR is located in the
lower left cell of the enlarged element. The lower left corner
of the enlarged element is (⌊x1

w ⌋ ∗ w, ⌊y1

h ⌋ ∗ h). Thus, if
⌊x1

w ⌋ ∗ w + α ∗ w < x2, the MBR crosses more than α cells
at l-resolution in the x axis and cannot be represented by any
enlarged element at the l resolution. The width of cell at (l−1)-
resolution is w3 = 0.5l−1 = 2 ∗ w, so w2 ≤ α ∗ w = α

2 ∗ w3.
Thus, the MBR crosses at most α

2 + 1 ≤ α cells at (l − 1)-
resolution on the x axis, where α ≥ 2. Analogously, the MBR
crosses at most β

2+1 ≤ β cells on the y axis, thereby the MBR
can be covered by an enlarged element at (l − 1)-resolution.
Similarly, if ⌊y1

h ⌋∗h+α∗h < y2, the MBR must be represented
by an enlarged element at l − 1 resolution.
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Figure 6 provides examples. m1 and m2 have the same
width, but m2 crosses more than α cells on the x-axis, making
it unable to be represented by the enlarged element at l-
resolution. On the other hand, m1 can be represented by the
enlarged element at l-resolution. At the same time, m3 can
not be represented by the enlarged element at l resolution.

(2) Encoding of TShape Index. An enlarged element con-
sists of α ∗β cells starting from the lower left cell. Therefore,
we represent the enlarged element using the quadrant sequence
of the lower left cell. Additionally, we use shape codes to
indicate shapes within an enlarged element.
Quadrant Sequence and Quadrant Code: Each division of the
quad-tree generates four sub-cells, and we number them from
0 to 3. Thus, a cell at r-resolution has a quadrant sequence
from 1-resolution to r-resolution, denoted as Q = q1q2...qr.
Figure 2(a) shows examples where a cell at 2-resolution is
denoted by ’03’, and a cell at 3-resolution is denoted by ’310’.
We adopt the core idea of XZ-Ordering [14] to convert Q into
an integer (quadrant code) while preserving its lexicographical
order by using a depth-first visiting order. Formulaically,

code(Q) =

r∑
i=1

(qi ∗
4g−i+1 − 1

3
+ 1)− 1, (2)

where g is the maximum resolution. Figure 8(a) provides
examples, e.g., the quadrant codes for enlarged element ‘03’
and ‘33’ are 4 and 20, respectively. d
Shape Code: An enlarged element contains α ∗ β cells, and
we use the combination of cells as an index space to represent
trajectory shapes. We use α ∗β bits to indicate whether a cell
is used in forming an index space. If a trajectory intersects
with a cell, its corresponding bit is 1. Otherwise, the bit is set
to 0. Figure 7 gives examples. The enlarged element of ‘03’
contains 3∗3 cells and covers T0, T1, T2, and T3. Their shapes
are represented by shape codes s0, s1, s2, and s3, respectively.
Index Value: We use a long integer as the index value of a
shape in an enlarged element. Compared to strings, integers
are easier to maintain and more efficient. Additionally, integers
occupy less space. For instance, representing an index space of
an enlarged element with 4∗4 = 16 cells at the 8th resolution
would require at least 24 bytes for string encoding, whereas a



long integer only requires 8 bytes. We utilize the last α∗β bits
of a long integer to record the shape code (s) of a trajectory
and use the remaining bits to record the quadrant code of the
corresponding enlarged element (E). Formulaically,

TShape(code(E), s) = (code(E) << (α ∗ β)) | s, (3)

where ‘<<’ is the bitwise left shift operator, ‘|’ is the ‘or’
operator, as shown in Figure 8(b). The maximum quadrant
code is code(3g) =

∑g
i=1 4

g−i+1−1 = 4g+1−4
3 −1 < 4g+1

2 =
22g+1. Thus, if 2g + 1 + α ∗ β ≤ 64, 64 bits are sufficient to
encode index values, e.g., when α ∗ β = 3 ∗ 3, we can hold
index values whose resolutions are not greater than 27.
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Fig. 8. Index Values of TShape Index.
(3) Optimization of Shape Code. An enlarged element with
α ∗ β cells can generate 2α∗β of shape codes. A larger
α∗β allows more detailed index values to represent trajectory
shapes. However, a large range of index values can lead to
two issues. 1) The number of shapes intersecting with a query
would be enormous, resulting in extensive computation; 2)
The bitmap does not consider the spatial features of trajectory
shapes, resulting in scattered index values and causing similar
trajectories to be stored in many different data regions. Thus, it
leads to many I/O operations during querying. In reality, only
a small number of shapes in an enlarged element are used
to represent the shape of trajectories. Figure 16(a) illustrates
a real case of used shapes in enlarged elements with 5 ∗ 5
cells. Almost all of the enlarged elements use less than 1000
shapes. Thus, we only need to encode the shapes that are
actually used. Similar index spaces are likely to represent
similar trajectories. Hence, our encoding should preserve this
characteristic. Suppose an enlarged element has M shapes
(S = {s0, s1, ..., sM−1}) that are actually used. The optimiza-
tion goal is to renumber them from 0 to M − 1 with the best
order. Figure 9 shows an example.

Shapes:

Final Codes:

s0 s1 s2 sM-1...

Reorder:

0 1 2 M-1...

s1 sM-1 s0 s2...

Fig. 9. Optimization of Shape Codes.

Shapes that are similar in space, the closer their shape codes
should be. To measure similarity, we use the Jaccard similarity
coefficient. The similarity of shapes si and sj is:

Sim(si, sj) =
|si ∩ sj |
|si ∪ sj |

, (4)

where |si ∩ sj | is the number of cells that are covered by si
and sj , |si∪sj | is the number of cells that are covered by si or
sj . We aim to find a better order (O =⟨o0, o1, o2, ..., oM−1⟩)
that maximizes the cumulative value of similarity between any
two adjacent codes, where oi ∈ S, and ∀i ̸= j, then oi ̸= oj .

argmax
O

M−2∑
i=0

Sim(oi, oi+1). (5)

This problem can be seen as a variant of the TSP problem
(Traveling Salesman Problem, an NP-hard problem), which
finds the longest path without returning to the starting point.
Given M shapes, we can represent the similarities between
these shapes using a complete graph. Each shape corresponds
to a node in the graph, and the similarities between shapes
correspond to the edges between nodes. The objective is to
find the longest path that visits all shapes exactly once. In
this paper, we utilize the Greedy Algorithm [40] and Genetic
Algorithm [41] to solve the encoding of shapes. Specifically,
the greedy algorithm is a heuristic algorithm that builds a path
by choosing the furthest unvisited shape for each iteration.
The advantage of the greedy algorithm is its simplicity and
efficiency. Figure 7 presents four shapes, and their similarities
are shown in Figure 10. The cumulative similarity of the
order (⟨s0, s1, s3, s2⟩) selected by the greedy algorithm is 1.92,
while that of the raw order (⟨s0, s1, s2, s3⟩) is 1.75.
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Fig. 10. Cumulative similarities of different orders.

3) IDT Index: We propose IDT index to support ID tem-
poral queries. Given a trajectory T , its start time and end time
are in TPi and TPj , respectively. The IDT index value is,

IDT (T ) = T.oid :: TR(TBi,j),

where ‘::’ is the concatenation operation, T.oid is the identifier
of the object that generates the trajectory T , and TR(TBi,j)
is the TR index value of the time range of the trajectory.

4) ST Index: ST index supports spatio-temporal range
query (STRQ) efficiently. The index value of ST index is

ST (T ) = TR(TBi,j) :: TShape(code(E), s),

where TR(TBi,j) is the index value of time range of T , E is
quadrant sequence of the smallest enlarged element that covers
T and s is the optimize shape code of T .

B. Storage Schema
The goal of designing a storage schema is to manage large-

scale trajectory data in key-value databases effectively. TMan
provides two kinds of table types: the primary table and the
secondary table. Users can create primary tables for query
scenarios that require high efficiency. For query scenarios
that do not require the best efficiency, it is recommended
to use secondary tables, which can reduce storage overhead.
Additionally, we adopt an index cache mechanism to minimize
the computation of the index. The metadata table stores the
parameters of indexes and user configurations.
(1) Primary Table. It stores the trajectory data using a primary
index. The key of the primary table is as follows:

rowkey = shards :: index value :: tid, (6)
where shards is a hash number used to avoid the hot-spotting
problem. The primary index calculates index value of a



Primary Table (TShape)
value

oid tid points featureskey

1 t1 byte[ ] dp-features0001t1
1 t2 byte[ ] dp-features0011t2
2 t3 byte[ ] dp-features0011t3
3 t4 byte[ ] dp-features0111t4
4 t5 byte[ ] dp-features1011t5

SecTable (IDT)
valuekey

[0001t1, 0011t2]1-11
[0011t3]2-12

... ...

SecTable (TR)
valuekey

[0011t3, 0111t4]12
[1011t5, 1011t6]23

... ...
4 t6 byte[ ] dp-features1101t6
... ... ... ......

tr
11
11
12
12
23
23
...

Primary Table (TShape)
value

oid tid points featureskey

1 t1 byte[ ] dp-features0001t1
1 t2 byte[ ] dp-features0011t2
2 t3 byte[ ] dp-features0011t3
3 t4 byte[ ] dp-features0111t4
4 t5 byte[ ] dp-features1011t5

SecTable (IDT)
valuekey

[0001t1, 0011t2]1-11
[0011t3]2-12

... ...

SecTable (TR)
valuekey

[0011t3, 0111t4]12
[1011t5, 1011t6]23

... ...
4 t6 byte[ ] dp-features1101t6
... ... ... ......

tr
11
11
12
12
23
23
...

Fig. 11. Storage Schema (TShape Index is the primary index).

trajectory to support the primary query efficiently, e.g., if there
is a need for numerous spatial range queries, set TShape as
the primary index. tid is the unique identifier of a trajectory.

The value of the primary table contains all trajectory in-
formation. As depicted in Figure 11, the value of each row
consists of oid, tid, points, tr and features. An object can
generate at least one trajectory. oid is the identifier of the
object that generates the trajectory, and tid is the identifier of
the trajectory. tr denotes the index value of TR index.

points: Trajectory data often consists of a large number of
location points. It requires significant storage and transmission
overhead. Thus, instead of storing the raw points, we compress
a trajectory into bytes without losing data quality. First, a
trajectory is converted to three arrays: latitude, longitude, and
timestamp values. Then, we can use compression methods
such as Elf [42], Elf+ [43], VGB [44], simple8b [45], and
PFOR [46] to compress these values into bytes, which are
stored in the points column. Besides, [47] gives more com-
pression methods for integers.

features: We utilize the DP-Features proposed in [12]
to extract representative points and bounding boxes from a
trajectory. [12] proved that DP-Features can greatly reduce
the computation overhead for similarity queries. TMan also
leverages DP-Features to improve the efficiency of spatial
range queries and spatio-temporal queries.
(2) Secondary Table. The secondary tables of TMan only
store the relationship between the secondary index values and
the primary keys. Figure 11 shows two examples. The key of
the IDT table consists of the oid of an object and the TR index
value of the time range of a trajectory. The value corresponds
to row keys of a primary table that record trajectories generated
by the object. At the same time, the key of TR table is the TR
index values that are used to represent trajectory time ranges.
(3) Index Cache. Only a few shapes within an enlarged
element are used to represent trajectories and are renumbered
by way of Section IV-A2(3). Therefore, we must maintain
the mapping between final codes and used shapes in an
enlarged element. We utilize Redis [48] to store the tuple
⟨enlarged element, shape, final code⟩. For example, the
tuples for s0, s1, s2, and s3 in Figure 7 and Figure 10 are ⟨03,
111100001, 0⟩, ⟨03, 011110001, 1⟩, ⟨03, 000010011, 3⟩, and
⟨03, 010010011, 2⟩, respectively. When the database receives
a query request, it first looks up the corresponding enlarged
elements in the index cache. If an enlarged element is not
found in the index cache, the related tuples of the enlarged
element are read from Redis into the index cache. Additionally,
to ensure query performance and reasonably use the limited
cache space, the LFU [49] strategy is employed to remove the
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Fig. 12. Flow of Query Processing.
least frequently used cache from memory.
(4) Metadata Table. TMan utilizes a metadata table to store
information about the indexes used to build primary and
secondary tables. It also records the parameters of the indexes,
such as α and β for building TShape index.

C. Update

TMan offers an update operation for flexible management
of trajectory data. By utilizing TShpae index from IV-A2,
we can compute the quadrant codes and shape codes for
given trajectories. Subsequently, we group trajectories by their
quadrant codes. Within each group, we assign optimized shape
codes to the trajectories. To enhance the encoding of shape
codes, we have implemented an optimization mechanism and
stored the mapping of shape codes and optimized codes in an
index cache. We also employ a buffer shape cache to handle
shape codes that have not been previously optimized. Fisrtly,
we store new trajectories with shape codes that have been
encountered by accessing the index cache and buffer shape
cache. Subsequently, for trajectories whose shape codes are
not found in either the index cache or buffer shape cache, we
store these shape codes in the buffer shape cache and store
the trajectories using their raw shape codes. Once the number
of shape codes in the buffer shape cache exceeds a maximum
threshold, we trigger a re-encoding process for all shape codes
in both index cache and buffer shape cache. Concurrently, we
extract data with outdated index codes, delete them, and store
them using the updated index codes. Next, we update index
cache and clear buffer shape cache for the next iteration. This
approach helps to efficiently manage the encoding and storage
of shape codes while minimizing computational overhead.

V. QUERY PROCESSING

A. Main Idea

Figure 12 presents the process of query processing. With
carefully designed indexes and storage schema, TMAN can
support various fundamental queries efficiently. Users may not
set all indexes as a primary table for economic considerations.
Thus, TMAN provides an RBO (Rule-based Optimization) to
determine the optimal table for a given query. TMAN supports
six types of queries, including temporal range queries, ID-
temporal queries, spatial range query queries, spatio-temporal
range queries, threshold similarity queries, and top-k similarity
queries. Given a query, TMAN first judges its query type.
A complicated query can use indexes I = {I1, I2, ..., In} to
accelerate efficiency, the priority is as follows:



IDT > primary indexes > secondary indexes.

IDT index is the highest priority because the number of
trajectories generated by the same object is typically much
smaller than other queries. primary indexes has higher prior-
ity than secondary indexes because the secondary indexes
need to query the relevant keys from the secondary table
first and then obtain the trajectories from the primary table,
resulting in sub-optimal performance. Besides, if a query
contains two kinds of query types, TMAN may change the
query planner by calculating the cost of different execution
strategies based on CBO (Cost-based Optimization).

Once the appropriate index is selected to accelerate a query,
it is executed using three steps: 1) calculating candidate
index values (Sections from V-B to V-F); 2) generating query
windows (V-F)(1); and 3) pushing down filters (V-G(2)).

B. Temporal Range Query

TMAN utilizes the TR index values to represent time ranges
of trajectories. The time bin of an index value is greater than
or equal to the time ranges indexed with that value. Given
a time range tr = [ts, te], suppose tr.ts is in i-time period
TPi and tr.te is in TPj . TRQ first finds all time bins T B
that satisfy Equation 7, then refines trajectories by comparing
trajectory time ranges with tr in the step of pushing down.
∀TBk,p ∈ T B,∃TPm ∈ TBk,p ⇒ TPm ∩ TBi,j ̸= ∅. (7)

Lemma 5. ∀ TBk,p intersecting with TBi,j , k and p satisfy:
1) i−N + 1 ≤ k ≤ j;
2) if i−N + 1 ≤ k < i, then i ≤ p ≤ k +N − 1;
3) if i ≤ k ≤ j, then k ≤ p ≤ k +N − 1.

Proof. TBk,p cannot exceed N periods. Thus, the start time
period of TBk,p must be greater than or equal to TPi−N+1,
otherwise TBk,p∩TBi,j = ∅. If k > j, time bins starting from
TPk cannot intersect with TBi,j . Thus, i−N + 1 ≤ k ≤ j.

When i − N + 1 ≤ k < i, if p < i, then TPp < TPi,
so that TBk,p cannot intersect with tr. If i ≤ p, at least one
time period of TBk,p within TBi,j , i.e., TBk,p ∩ TBi,j ̸= ∅.
Besides, TBk,p starts from TPk, and |TBk,p| ≤ N , so that
TPp ≤ TPk+N−1. Thus, i ≤ p ≤ k +N − 1.

When i ≤ k ≤ j, we have TBk,p ∩ TBi,j ̸= ∅. For TBk,p,
the end time period must be among time periods from TPk

to TPk+N−1, so that k ≤ p ≤ k +N − 1.
Figure 13 shows examples. TMAN calculates corresponding

index values of tr based on Lemma 5. The index values of
adjacent time bins are contiguous based on Lemma 1 and 2.
Thus, when i − N + 1 ≤ k < i, and i ≤ p ≤ k + N − 1,
candidate index values of time bins starting from TPk are in a
closed interval [TR(TBk,i), TR(TBk,k+N−1)]. Additionally,
candidate index values of time bins starting from time periods
{TPk|i ≤ k ≤ j} form a closed interval:
[TR(TBi,i), TR(TBj,j+N−1)] =

⋃
i≤k≤j

[TR(TBk,k), TR(TBk,k+N−1)].

Hence, only N closed intervals can be candidates. Algorithm
1 gives a detailed algorithm to calculate index values.
Discussion. Let Q represent the length of the query range, D
represent the size of the dataset, and T represent the number of
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Fig. 13. Examples of TRQ.

time periods covering the dataset. Assuming that N represents
the maximum time period of the trajectories and the start
times of the trajectories are evenly distributed among T time
periods. Each period has N time bins, and trajectories are
evenly distributed. Thus, each time bin has D/(T ∗ N) of
trajectories. A TR query, as described in Algorithm 1, requires
retrieving approximately N∗(N−1)

2 +Q ∗N of time bins, such
that N−1+2Q

2T ∗ D of data must be retrieved by the query.
Assuming a time period is 30 minutes, the time range T of
D is 1488 (equivalent to one month, 31 ∗ 24 ∗ 2 = 1488),
the maximum time range N of trajectories is 8 time periods,
and a query range Q of 2 time periods. By substituting these
parameters into the formula, we can calculate that the amount
of data required for the TR query is approximately 0.0037D.
It is worth noting that the actual situation may be influenced
by factors such as the particular data distribution.
Algorithm 1: TR Index Values of tr: TR values(tr)

Input: A time range: tr = [ts, te].
Output: Index values: values.

1 i = TP (tr.ts); j = TP (tr.te); //Time periods of ts and te;
2 k = i − N + 1;
3 for k < i do
4 values.add([TR(TBk,i), TR(TBk,k+N−1)]);
5 k = k + 1;

6 values.add([TR(TBi,i), TR(TBj,j+N−1)]);
7 return values;

C. Spatial Range Query

TMAN uses TShape index to represent the shapes of
trajectories. The index space of the TShape index is composed
of certain cells in an enlarged element, forming an irregular
shape. Figure 5 gives some examples. Given a spatial range
SR, the spatial range query SRQ aims to calculate all index
values whose corresponding shapes intersect with SR. We first
use a Breadth-First Search to check the spatial relationship
between enlarged elements and the query range SR, and pick
out related shapes. There are three spatial relationships:
(1) contains: If a query range SR covers an enlarged element
Ei = q1q2...qr, the enlarged element Ej prefixed with Ei is
also covered by SR. We use Ej ⊆ Ei to represent Ej prefixed
with Ei, e.g., Ei = 31 and Ej = 310. Formally,

Ei ⊆ SR, ∀Ej ⊆ Ei ⇒ Ej ⊆ SR. (8)

Proof. Quadrant sequences of enlarged elements are encoded
by a Depth-First strategy. We use the quadrant sequence of
the left lower cell to represent an enlarged element. Thus, the
left lower cell of Ei covers that of Ej . In addition, the size of
a single cell in Ej is smaller than that of Ei. Therefore, Ei

covers Ej . Thus, if SR covers Ei, then Ej ⊆ SR.
Assuming the resolution of Ei is r, the maximum resolution

is g, so the number of enlarged elements prefixed with Ei is

EN(Ei) =

g∑
i=l

4i−r.



Based on Equation 2, the quadrant codes of all enlarged
elements prefixed with the same quadrant sequence are con-
secutive. Thus, quadrant codes of these enlarged elements are
in a left-closed and right-open interval:

[code(Ei), code(Ei) + EN(Ei)).

All index spaces of these enlarged elements are picked as
candidates. Based on Equation 3, the corresponding index
values of these index spaces are in the interval:
[TShape(code(Ei), 0), TShape(code(Ei) + EN(Ei), 0)).

(2) intersects: If SR intersects with an enlarged element, we
need to verify whether the shapes of this enlarged element
intersect with SR. A shape s of an enlarged element can be
considered to a candidate only if it intersects with SR.
(3) disjoint: These enlarged elements can be directly ignored.

The procedure for generating index values of SRQ is
presented in Algorithm 2. We use the breadth-first strategy to
pick out related index values. Initially, we add cells at the 1st
resolution into the FIFO (First in, first out) queue remaining
(Lines 1 to 3) and add a ‘LevelTerminator’ that marks all
enlarged elements at the same resolution are checked. Then,
the candidate index values are generated recursively. In line 6,
we poll the top cell c in the remaining queue. If the current
enlarged element E = c.enlarged element is contained in
SR, we add all index values whose corresponding enlarged
elements are prefixed with E to the final value, as shown in
lines 13-16. Otherwise, if SR intersects with E, we obtain the
actually used shapes of E from the index cache (cf. Section
IV-B(C)). For each shape intersecting with SR, we add its
corresponding index value to the final value, as shown in lines
18-22. In lines 23-25, we add four children of the current cell
into remaining for the next level of checking. If the current
c is ‘LevelTerminator’ and remaining is not empty, we
continue to check index space at the next resolution and add
‘LevelTerminator’ to the end of remaining, as shown in
lines 7-10. If the remaining is empty, we finish the search.

D. ID Temporal Query

Recall the IDT index (cf. Section IV-A3), we first calculate
the TR index values of the given time range (cf. Section V-B).
Then, we combine the given ID and the TR index values to
generate query windows and execute the query in parallel.

E. Spatio-temporal Range Query

Recall the ST index (cf. Section IV-A4), we need to calcu-
late the range of TR index values for the given time range
tr and calculate the range of TShape index values for the
given spatial range SR (cf. Sections V-B and V-C). Then, we
combine the TR index values and TShape index values to
generate query windows and execute the query in parallel.

F. Similarity Queries

Similarity queries [50] are crucial for various trajectory data
analysis tasks. When α = 2 and β = 2 and we do not
use the index cache, the TShape index is similar to an XZ*
index (proposed in TraSS [12]). Additionally, we observe

Algorithm 2: TShape Values: TShape values(SR)
Input: A spatial range: SR.
Output: Index values: values.

1 l = 1;
2 for cell ∈ Root.children do
3 remaining.add(cell);
4 remaining.add(LevelTerminator);
5 while remaining ̸= ∅ do
6 c = remaining.poll;
7 if c = LevelTerminator then
8 if remaining ̸= ∅ then
9 l = l + 1;

10 remaining.add(LevelTerminator);
11 else
12 E = c.enlarged element;
13 if SR contains E then
14 min = TShape(code(E), 0);
15 max = TShape(code(E) + EN(E), 0));
16 value.add([min,max));
17 else if SR intersects E then
18 for shape in Index cache(E) do
19 if shape intersects SR then
20 v = TShape(code(E), shape.code);
21 value.add([v, v]);
22 if l < g then
23 foreach subElement ∈ c.children do
24 remaining.add(subElement);

25 return values;

that the query processing of the similarity searches designed
by [12] can utilize the TShape index to achieve the same
global pruning and local filter proposed in [12] with a slight
modification. Thus, TMAN incorporates the capabilities of
TraSS to support threshold similarity and top-k similarity
queries. Please refer to [12] for more details.

G. Generate Query Windows and Push Down

(1) Generate Query Window. As described in Section
IV-B, trajectories are stored in the primary table. Sections from
V-B to V-F provide algorithms to calculate candidate index
values for fundamental queries. We generate query windows to
extract related trajectories based on the candidate index values.
Since trajectories are only stored in the primary table, if the
primary filter of a given query needs to use the primary index,
we combine shards and candidate index values to generate
query windows. Otherwise, we scan the secondary index table
to obtain candidate keys and generate query windows by these
keys. Figure 12 shows the process.
(2) Push Down and Parallel Execution. Typically, key-
value databases store data in distributed storage systems.
Filter conditions can be pushed down to the storage layer,
enabling the storage system only to return data that satisfies
the conditions rather than all candidate data. By pushing
down queries to the storage layer, we minimize the overhead
of data transmission and enhance the efficiency of queries.
TMAN supports three basic filters: temporal filter, spatial
filter, and similarity filter. It also allows combining multiple
filters into a filter chain to implement complex filtering logic.
This filter chain is pushed down to relevant data regions
and executed in parallel. The push-down operation reduces
unnecessary data transmission, while parallel execution takes
advantage of the distributed architecture of the storage system
to efficiently process queries. By leveraging push-down and
parallel execution techniques, TMan improves the efficiency
and scalability to handle large-scale trajectory data.



VI. EVALUATION

We evaluate the performance of temporal range queries, spa-
tial range queries, spatial-temporal range queries, ID temporal
queries, threshold and top-k similarity searches.
Baselines. We evaluate our work with other state-of-art works,
i.e., TMan (our work), TrajMesa [2], ST-Hadoop [13], TraSS
[12], DITA [27], DFT [28], and REPOSE [30]. Among the
systems, TMan, TrajMesa, and ST-Hadoop support temporal
range, spatial range, and spatio-temporal range queries. TMan
and TrajMesa also support ID temporal query. We compare
similarity queries with TraSS, TrajMesa, DITA, DFT, and RE-
POSE. Besides, we retrofit TrajMesa by adopting the storage
schema and push-down strategies of TMan. Note that spatio-
temporal indexes adopted by VRE [11] are similar to TrajMesa,
and the code of VRE is not released. We have shown the
advantages of our system compared to VRE in Section II.
Datasets. We evaluate the efficiency of TMan using three
datasets: (1) TDrive [51], which contains 318,744 taxi tra-
jectories of Beijing during a week; (2) Lorry, consisting of
2,643,450 lorry trajectories of Guangzhou, China, generated
by lorry drivers from 2014-03-01 to 2014-03-31; (3) Syn-
thetic. To evaluate the scalability, we offset the time range
and spatial location of the original data to generate 10x Lorry
data. Section VI-A shows the distribution of TDrive and Lorry.
Setting. We randomly generate 100 query windows within the
spatio-temporal range of TDrive and Lorry, respectively, and
consider the 50th percentile of the query results as the final
result. In Section VI-A, we evaluate the performance of our
proposed indexes. We vary the time range from 5 minutes to 24
hours to evaluate the efficiency of TRQ in Section VI-B. Next,
in Section VI-C, we vary the spatial range from 100m*100m
to 2500m * 2500m to evaluate SRQ. The performance of the
STRQ and IDT are evaluated in Section VI-D. We analyze
similarity queries in Section VI-E. Furthermore, we use syn-
thetic datasets to evaluate the scalability and tail latency in
Section VI-F. Our experiments are carried out on five nodes
(each with an 8-core CPU, 1T disk, and 32GB memory).

A. Effect of Indexes

1) Distribution of Datasets: Figures 14(a) and (b) illustrate
the distribution of time ranges in TDrive and Lorry datasets. In
TDrive dataset, approximately 66% of trajectories have time
ranges of less than 2 hours, and over 99% of trajectories are
less than 18 hours. In Lorry dataset, about 88% of trajectories
are less than 2 hours, and 99% of trajectories are less than
14 hours. The spatial distribution of trajectories is evaluated
with α = 5 and β = 5. The spatial boundaries of TDrive and
Lorry are (110, 35, 125, 45) and (70, 0, 140, 55), respectively.
Figures 14(c)(d) display the percentage of trajectories at
different resolutions. Figure 14(c) reveals that most TDrive
trajectories are concentrated within enlarged elements with
resolutions ranging from 7 to 10. That is because drivers
in Beijing typically transport passengers between 2.7km and
65km. In Figure 14(d), less than 1% of trajectories in Lorry
exhibit big spatial ranges due to transporting goods to other
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Fig. 14. TR and SR Distribution of Datasets.

cities. Furthermore, most trajectories of Lorry are distributed
in resolutions from 9 (about 76km) to 14 (about 2km).

2) Performance of TR Index: TR index represents a time
range by m time periods. We set the time period of TR index
as 10 minutes, 30 minutes, 1, 2, 4, 6, and 8 hours, denoted
as TR-10M, TR-30M, TR-1H, TR-2H, TR-4H, TR-6H, and TR-
8H, respectively. Besides, we compare TR index with XZT .
Table I presents the query time and the number of candidates
varying with query windows. Our observations are: 1) as the
query window increases, more time is required to visit more
trajectories; 2) TR index outperforms XZT index. For instance,
when the query window is 24 hours, TR-1H outperforms XZT
by about 3x; 3) Shorter periods result in fewer trajectories
being accessed. However, a shorter time period increases the
encoding space of index values, which negatively affects data
locality. Thus, although TR-1H retrieves more data than TR-
10M, the data storage of TR-1H is more centralized than TR-
10M, so sometimes TR-1H outperforms TR-10M.

TABLE I
PERFORMANCE OF TEMPORAL INDEXES (LORRY)

Indexes Query Time of Different Time Windows (ms) Candidates of Different Time Windows (#)

5m 10m 30m 1h 6h 12h 24h 5m 10m 30m 1h 6h 12h 24h

XZT 273 276 345 543 1116 2058 4029 24020 25510 29974 35739 108883 202772 412558
TR-10M 133 204 222 252 519 894 1560 3692 3829 4959 7299 23420 45086 90965
TR-30M 162 170 171 186 546 876 1486 5148 5242 6307 8317 24308 4586 92139
TR-1H 159 180 198 204 480 837 1342 6982 7114 8980 10099 25935 47703 93921
TR-2H 165 172 174 195 498 891 1498 10595 10595 10595 10697 29548 51363 97261
TR-4H 207 213 213 234 531 903 1590 16911 16911 16911 16911 33989 59525 104700
TR-6H 288 279 291 291 639 999 1659 23669 23669 23669 23669 46527 67104 111423
TR-8H 333 318 312 342 636 1047 1752 29589 29589 29589 29589 37724 69831 117707

3) Performance of TShape Index: We evaluate the effi-
ciency of TShape index by executing spatial range queries
(1.5km * 1.5km). The index space of TShape index is com-
posed of a maximum of α ∗ β cells. We devise encoding
methods tailored for index spaces to store trajectories.
Effect of α and β: We vary α ∗ β from 2 ∗ 2 to 5 ∗ 5
to observe the effect of α ∗ β. Figure 15(a) shows that the
number of visited candidates decreases as β increases while
keeping α fixed. This phenomenon occurs because a larger
α ∗ β allows for the representation of finer shapes so that
more trajectories can be filtered. However, a larger α ∗ β
generates more index spaces, leading to more scattered data
storage. Consequently, query processing requires more time to



calculate the intersecting index spaces with the query range.
Thus, as shown in Figures 15(a)(b), we observe that while the
ability to represent shapes of 3 ∗ 3 is slightly worse than that
of 3 ∗ 4, 3 ∗ 3 exhibits faster query times.
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Fig. 15. Varying α and β.

Effect of Encoding: An enlarged element formed by α ∗ β
cells has the potentiality to generate 2α∗β shapes. However,
in real-world datasets, only a small fraction of these shapes
are used to represent trajectories. Figure 16(a) illustrates that
an enlarged element only utilizes less than 4734 shapes to
represent trajectories, and most enlarged elements contain
fewer than 10 shapes. Therefore, we employ an index cache
mechanism to maintain the shape codes that are actually used
in each enlarged element. Additionally, we explore different
encoding methods to optimize the representation of shapes.
Figure 16(b) demonstrates the consequence of not utilizing
an index cache. In this case, significant computation time is
wasted searching for 2α∗β shapes that may intersect the query
conditions. Among the encoding methods, genetic encoding
outperforms the others because it assigns adjacent index values
to proximity shapes, reducing disk I/O operations during
querying. Moreover, we apply the index cache and push-down
strategies to XZ* index. Experimental results indicate that
TShape index performs better than XZ* index. Nonetheless,
as depicted in Figure 16(c), compared to greedy encoding
and bitMap encoding, genetic encoding requires more time
to determine the optimal order of shape codes, resulting in
more storage time than others. Besides, instead of indexing a
trajectory using a code, we use the inverted list of intersecting
cells to store each trajectory, which requires more storage cost
and brings more I/O cost. Moreover, it needs time to remove
duplicates. Thus, it is slower than TShape index.
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Fig. 16. Performance of TShape Index (TDrive, α ∗ β = 5 ∗ 5).

B. Temporal Range Queries

We evaluate the temporal range queries. Figure 17(a) dis-
plays the query time, and Figure 17(b) shows the number of
candidates. For TrajMesa and TMan, candidates are visited
trajectories, whereas for STH, candidates are visited points
since trajectories are split into points and stored in HDFS. Fig-
ure 17(a) indicates that TMan achieves the best performance.
TrajMesa utilizes XZT to index the time ranges of trajectories,
while TMan-XZT uses the same XZT index in our framework.
TMan-XZT outperforms TrajMesa, due to its ability to push

down the query condition. TR index has an exquisite index
structure and encoding method, which reduces the number of
visited candidates in TDrive and Lorry by 30% and 77% than
TrajMesa, respectively. Furthermore, Figure 17(b) shows that
TMan using TR index accesses the fewest number trajectories,
even by one or two orders of magnitude than STH.
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Fig. 17. The Performance of Temporal Range Query.

C. Spatial Range Queries

We vary spatial windows from 100m*100m to 2500m *
2500m to evaluate spatial range queries. Figure 18 shows
that as the spatial window size grows, all systems require
longer query time due to accessing more candidates. TMan
is faster than TrajMesa and STH by pruning more irrele-
vant trajectories. STH needs to build a Map-Reduce task on
HDFS, leading to multiple I/Os that slow down its query
performance. TMan-XZ adopts the spatial index of TrajMesa.
The results indicate: 1) with the index cache and push-down
strategies, our work is superior to TrajMesa; 2) TMan with
TShape surpasses TMan-XZ, demonstrating TShape index is
fine than XZ-Ordering. Averagely, compared to XZ-Ordering,
the TShape index reduces the number of visited candidates on
TDrive and Lorry by 83% and 52%, respectively.
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Fig. 18. Performance of SRQ.

D. IDT and STR Queries

IDT Query: We conduct experiments for IDT query, as
shown in Figure 19(a). Among our baselines, only TrajMesa
supports IDT query. Typically, the number of trajectories that
are generated by a moving object is very small. Figure 19(a)
shows that 50% of the moving objects do not generate more
than 40 trajectories over 12 hours. Therefore, the IDT queries
in TrajMesa and TMan are very fast, as shown in Figure 19(a).
Spatio-temporal Query. We evaluate STRQ experiments
on TDrive and Lorry, by randomly combining spatial and
temporal ranges of Sections VI-B and VI-C. Figure 19(b)
shows that: TMan and TMan-XZ outperform TrajMesa and
STH by up to 6-10 times. TrajMesa generates time periods
that intersect with the given time range, uses XZ+ index to get
spatial index values, and combines them into query windows.
However, TrajMesa has a time period ( e.g., a week) that
requires checking many irrelevant trajectories for a short time
range. STH partitions trajectories by time slice and builds the
spatial index in each partition. STH starts a MapReduce job



to filter trajectories in partitions that intersect with the given
time range, incurring expensive job startup and disk I/O costs.
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Fig. 19. The performance of IDT and STR Queries.

E. Similarity Queries

Threshold Similarity Query. We conduct experiments on
Frechet, DTW, and Hausdorff similarity queries. Figure 20
shows the results. We have the following observations: (1)
TMan is superior to other methods, surpassing them by up
to an order of magnitude. It is because TMan employs a
sophisticated index structure that is more meticulous than
the indexes used in TraSS, DFT, and DITA; (2) Despite
adopting the pruning strategies of TraSS, TMan surpasses
TraSS in performance. This is because the TShape index can
generate more detailed shapes than XZ*, and the index cache
mechanism reduces the computation of unnecessary shapes.
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Fig. 20. Threshold Similarity Query (Lorry, θ = 0.015).

Top-k Query. We conduct tok-k similarity search experiments.
Figure 21 shows that TMan exhibits the best performance.
In DFT, c ∗ k trajectories are selected from each intersecting
partition to obtain a threshold. However, trajectories are always
equipped with big MBRs, resulting in DFT getting a larger
threshold that intersects numerous partitions. REPOSE applies
RP-Trie (reference point trie) index to perform trajectory
filtering. When the dataset has a large spatial span, REPOSE
must build a large structure, which does not benefit from
pruning. DITA needs to build a large index for Lorry dataset,
which caused much time to search for candidates. Benefiting
from TShape index and index cache mechanism, TMan can
find top-k similar trajectories faster than TraSS.
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F. Scalability

Data Size. This paper mainly introduces TRQ and SRQ,
and we replicate Lorry data i times to evaluate the scalability
of TRQ and SRQ. Figure 22(a) displays the results. The
query time grows with data size because more trajectories must

be processed. STH needs to build a large index structure and
load much data from disks. Thus, STH performs worse than
others, and STH encounters the out-of-memory issue when the
data size is greater than Lorry-6. TMan is better than TrajMesa,
and its advantage becomes more significant as the data grows.
Update. As shown in Figure 22(b), we batch-insert new
trajectories into an existing table to evaluate the performance
of the update, which ensures the flexibility of TMan.
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Fig. 22. Scalability and Update.

Tail Latency. The tail latency is presented by considering
the 50th, 70th, 80th, 90th, and 100th percentiles of the query
results. As shown in Figures 23(a)(b), query times vary a lot
as the percentile increases, TMan keeps the best performance.
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Fig. 23. Tail Latency.

VII. CONCLUSIONS

This paper proposes TMan, a high-performance trajectory
data management system based on key-value data stores. We
subtly capture both temporal and spatial features of trajectories
using the TR and the TShape indexes. TR Index devises
a concise encoding for time ranges. TShape index utilizes
non-rectangular index spaces to describe the complex shapes
of trajectories. We devise an optimal encoding approach to
index trajectory shapes. Based on the proposed indexes, we
give a novel storage schema. To support various queries, we
design an index cache mechanism, which enhances query
performance by caching frequently accessed index and query
results. Additionally, we develop an efficient query processing
mechanism that takes advantage of the optimized indexes to
provide fast and accurate query results. Especially for TRQ
and SRQ, compared to the baseline, TMan can reduce false
hits by an average of 77% and 83%, respectively. TMan
is a part of the JD Urban Spatio-Temporal Data Platform
and achieves significant results in real-world applications.
Interesting future work includes 1) handling more query types;
and 2) exploring alternative learnable methods to encode the
shapes of the TShape index.
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