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Abstract— While a variety of innovative travel modes, such
as taxi service and ridesourcing service, have been launched to
improve the transportation efficiency, people still encounter travel
problems in real life. The major cause is the imbalance between
transportation supply and demand. To strike a balance, it is
well-recognized that an accurate and timely passenger demand
prediction model is the foundation to enable high-level human
intelligence (i.e., taxi drivers) or machine intelligence (i.e., ride-
hailing platforms) to allocate resources in advance. Although
quite a lot of deep models have been designed to model the
complicated spatial and temporal dependencies in a data-driven
way, they focus on the demand prediction of a single mode and
ignore the fact that passengers may shift between different modes,
especially between taxis and ridesourcing cars. In this paper,
we target a co-prediction problem that considers the prediction
of taxi and ridesourcing as two coupled and associated tasks,
and propose a novel Temporal and Spatial Intertwined Network
(TSIN) that consists of two twin components and an intertwined
component. Each twin in the TSIN model is able to extract
spatial and temporal dependencies from its corresponding travel
mode separately (i.e., intra-mode features), and the in-between
intertwined component is designed to bridge the twins and
allow them to exchange information (i.e., inter-mode features),
thus enabling better prediction. We first evaluate our model on
four real-world datasets. Results demonstrate the outstanding
performance of our model and the necessity to take into account
the influence between modes. Based on an additional demand
data from bike in NYC, we then discuss the generalizability in
coupling more transportation modes. Further results demonstrate
that our proposed intertwined neural network is highly flexible
and extendable, and can yield better prediction performance.

Index Terms— Demand prediction, ridesourcing, temporal and
spatial dependencies, intertwined neural network, deep models.
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I. INTRODUCTION

IN RECENT decades, the rising travel demands coming
after the overcrowded population imposes huge stress and

serious challenges on the urban transportation systems [5], [8],
[9], [31], [44]. To address the increasing difficulty in travelling,
a variety of innovative travel modes have been launched and
become dominant. As the most representative, the Mobility-
on-Demand (MoD) services provided by street-hailing taxi
companies and Transportation Network Companies (TNCs)
such Uber, Lyft, and DiDi, offer passengers flexible and
convenient travel choices. Nevertheless, the travel difficulty
problem remains unsolved or even worse, mainly due to the
imbalance between transportation supply and demand.

To alleviate such imbalance issue, it is well-recognized
that the short-term passenger demand prediction is the most
fundamental and essential for no matter human beings (i.e.,
taxi drivers) or machines (i.e., ride-hailing platforms) to make
the best online decisions [20]. On the one hand, the future
predictions can help taxi drivers seek out potential passengers
as quickly as possible, thus reducing their cruising time around
the streets. Such an effective passenger-finding strategy, sup-
ported by timely predictions, enhances not only the operational
efficiency of traditional taxi companies, but also the satis-
faction of passengers. On the other hand, the ride-hailing
platforms can also benefit from the predicted demands. For
instance, the demand predictor is usually built into the vehicle
dispatching system [51], and provide a practical understand-
ing of the relationship between supply and demand. In this
way, TNCs are able to better match potential demands with
their current vehicle supply, and conduct reasonable rider
assignment and vehicle scheduling. Moreover, simultaneous
prediction of multi-modal demands in the transportation sys-
tem can also provide more comprehensive information for
traffic management.

It is worth noting that, the taxi service and ride-hailing ser-
vice are quite different but related transportation modes [25].
However, most of the existing studies focus on the prediction
of demands for a single mode [33], [36], [40], [46], [48].
These prediction models are based on a premise that single-
transportation-mode service is a rather independent system,
and the future demands are only related to the historically
observed demands. In fact, passengers usually do not stick
to one transportation mode. They may shift among different
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Fig. 1. An illustrative example showing the temporal dependency (a) and
the mode-shift effect (b). Curves are plotted based on the real demand data
of the taxi mode and the ridesourcing mode.

modes as needed. While mode-shift behaviours exist, they
happen more intensively and frequently between taxis and
ridesourcing cars [12], [13], [25]. For example, when a
passenger has waited too long for a taxi, he/she may turn
to the ride-hailing service, but seldom seeks for buses/metros
around. Inversely, due to the surge pricing strategy of the
platform, a ride-hailing passenger may choose to get a taxi to
save money if the dynamic price is too high. These mode-shift
behaviours indicate that the passenger demands for taxi and
ride-hailing are different but interact with each other. In other
words, the aforementioned premise does not always hold.
Moreover, these influences dynamically exist in both spatial
and temporal dimensions, and form a complicated relationship
between each mode demand.

Inspired by the above observations, we believe that the
demand prediction for one mode should take into account
not only its historical demands but also the dynamic changes
of demands from other modes. The prediction of demands
for taxi mode and ride-hailing mode should be coupled and
viewed as two associated tasks. In this regard, it is natural
to aggregate them into a multi-task learning framework to
make co-predictions. Overall, it is an approach to improve the
transportation system efficiencies and it is worth to investigate.
It is also necessary to point out that although the co-prediction
can theoretically take advantage of multi-source data, it still
faces the two main challenges:

Challenge 1: It is challenging to model the dynamic tempo-
ral dependencies from both intra- and inter-mode perspectives.
Intuitively, the future demand for one mode is influenced by
its historical variations, but could also involve potential depen-
dencies with the demand sequence of another mode. As shown
in Fig. 1 (a), taxi and ridesourcing demand sequences have
their individual temporal patterns, and also correlate with each
other at some time periods. For example, the peak of taxi
demand comes after the peak of ridesourcing demand (the
green bar in the figure), and sometimes the situation is reversed
(see the purple bar). Worse still, such temporal interactions

between modes are evolving over time and are intertwined
with temporal dependencies of individual demand sequences.

Challenge 2: It is difficult to model the complex spatial
dependencies in the case of interaction between two modes.
Generally, the demand of one mode is self-correlated in space
due to geographical proximity [40], [43]. However, in our
case, the influence of another demand in the same space
cannot be overlooked. For instance, in Fig. 1 (b), the spatial
distribution of demands for both modes would be changed
due to the passengers’ shift behaviour. More notably, such
spatial interactions between the demands of different modes
are associated with human mobility and may occur in any
region. As a result, the intra- and inter-mode dependencies
are also widespread and hybrid in the spatial dimension.

To address the above challenges, we propose a co-prediction
model named Temporal Spatial Intertwined Network (TSIN
for short hereafter). It contains a taxi twin component
and ridesourcing twin component to perform the predic-
tion of taxi demand and ridesourcing demand, respectively.
In each of them, a spatial convolutional layer and a temporal
convolutional layer are applied to capture the intra-mode
dependencies. Furthermore, an intertwined component is
designed between twins. The main idea is to build a bridge
for each side of mode to learn the inter-mode dependencies.

In summary, the main contributions of our work include:
• Instead of improving the demand prediction for single

mode using more advanced deep models, this work targets
a co-prediction problem of taxi and ridesourcing demands
as a whole since they are not independent. We conduct
extensive experiments based on four real-life datasets
from two representative cities in US and compare our
method with 11 baselines. Results demonstrate that our
proposed TSIN outperforms the state-of-the-art methods
and its generalizability in different cities.

• In addition to modelling the temporal and spatial depen-
dencies of each mode within each twin component
separately, we further propose an intertwined component
to enable the spatial and temporal information trans-
fer between different modes to increase the demand
prediction accuracy for both taxi and ridesourcing. More-
over, our co-prediction framework is highly flexible and
extendable, it is very easy to plugin more twins of other
transportation modes (e.g., bike, e-scooter) to achieve a
higher accuracy than predicting individually.

The remainder of the paper is organized as follows.
In Section II, we summarize the research related to the demand
prediction. The problem of demand co-prediction is formulated
in Section III. In Section IV, we introduce the details of
TSIN model. Section V presents the experimental settings
and results. We discuss the flexibility and extendability in
coupling more transportation modes in Section VI. This paper
is concluded in Section VII.

II. RELATED WORK

In this section, we briefly review the related work which can
be grouped into two categories, i.e., passenger demand predic-
tion for single mode and passenger demand co-prediction for
multi-modes.
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A. Passenger Demand Prediction for Single Mode

As a branch of generic traffic prediction, passenger demand
prediction has attracted extensive attention in the past decades.
Most early studies treat the passenger demand as time
series data and use statistic based methods for prediction,
such as Historical Average and ARIMA [24]. Meanwhile,
many machine learning techniques have also been applied
to this field due to their ability to handle complex data,
such as the Support Vector Machine (SVM) [6], K-Nearest
Neighbor (KNN) [4], Linear Regression (LR) [30], Bayesian
network [27] and Gaussian process [10]. Among them, [30]
proposes a linear regression model with more than 200 million
dimensions of features to predict taxi demands for large-scale
online taxicab platforms. In the work of [10], the authors
design a censored Gaussian process model to estimate the
demand for the bike-sharing system.

In recent years, deep learning models have become the
most popular approaches for demand prediction owing to
their ability to capture nonlinear and complex features from
data [3], [39]. To name a few, [38] proposes a sequence
learning model based on Long Short Term Memory (LSTM)
network and mixture density networks to predict the taxi
demand. Reference [45] proposes a multi-task learning tempo-
ral convolutional neural network to predict passenger demands
in multiple regions. However, these methods consider only
the temporal dynamics and do not explicitly model the spa-
tial dependence of passenger demands. To tackle this issue,
some studies such as [15] and [50] incorporate Convolutional
Neural Networks (CNN) into LSTM to simultaneously cap-
ture the spatial-temporal dependencies of passenger demands.
For instance, [23] designs a convolutional recurrent neural
networks to predict taxi demand. In the work of [40], the
authors integrate spatial, temporal and semantic view together
to model spatial-temporal relations for predicting taxi demand.

Despite the excellent capability of CNN in spatial mod-
eling, it cannot capture non-Euclidean spatial dependencies,
especially for irregular regions [7]. For this reason, many
researches have resorted to Graph Convolutional Networks
(GCN) to model the spatial relationship for spatial-temporal
prediction tasks [1], [35]. For example, [1] designs a hierarchi-
cal graph convolutional structure to capture both spatial and
temporal correlations simultaneously for passenger demand
prediction. Many of these graph-based methods usually require
a predefined adjacency matrix to specify the spatial relation-
ship between nodes. However, that may hinder the model
for capturing complex and hidden spatial dependencies.
To address this problem, some studies characterize the diverse
relationships between regions by constructing multi-graphs,
such as geographic proximity, functional similarity, and trans-
portation connectivity [7]. Another solution is to learn an
adaptive adjacency matrix to discover the spatial dependency
of traffic data [2], [42], [47]. Readers can refer to the survey
paper [29] for a more completed view.

B. Passenger Demand Co-Prediction for Multi-Modes

The aforementioned extensive approaches, especially the
deep models, greatly improve the accuracy of demand

TABLE I
COMPARISON OF CO-PREDICTION WORKS. S/T IS THE ABBREVIATION

FOR SPATIAL/TEMPORAL

prediction, but they focus on the demand for single mode.
In fact, there are multiple transportation modes in a city, and
foreseeing the demands for multiple modes at the same time
can provide more support for a smart transportation system.
Thus, some researchers have paid attention to the simultaneous
prediction of multi-mode demands. To name a few, [41]
integrates a convolutional auto-encoder and a heterogeneous
LSTM to jointly predict the pick-up and drop-off demands
for taxis and shared bikes. Reference [14] proposes a novel
multi-task multi-graph learning approach to enable the joint
prediction of solo and shared ride-hailing demands. In [22], the
authors integrate stations of different transportation modes into
a heterogeneous graph, and design a self-learning approach to
capture the spatial dependencies of both homogeneous and het-
erogeneous stations. Reference [32] presents a framework to
co-predict travel demands for taxi and bike sharing, which con-
tains a shared component and the unique component to extract
the shared knowledge and the unique knowledge, respectively.
Reference [19] proposes a graph learning based approach to
predict demands for multi-modal systems with heterogeneous
spatial units. Reference [37] designs a multi-mode traffic
prediction framework based on attention mechanism, and
uncovers the impact of traffic mode interactions on traffic
demand.

To facilitate comparison of these studies, we summarize
these works in Table I. It can be seen that these works model
the interaction of different demands in only one dimension
(i.e., temporal or spatial). To be specific, the temporal inter-
action between different demands is performed by integrating
multiple demand sequences into a heterogeneous LSTM [41],
or by designing a shared component to extract shared knowl-
edge from different sequences [32]. On the other hand, the
spatial interaction is modeled by constructing a heterogeneous
graph with multi-mode transportation stations [22], [37], or by
learning cross-mode relations between different graphs [14],
[19]. Nevertheless, the demands for different modes may
interact with each other in both time and space, thus it is
not enough to capture the temporal or spatial interaction
alone. It is also worth mentioning that when introducing more
transportation modes to the prediction framework, constructing
a large heterogeneous graph is complicated although it is
intuitive.

In addition, we find that the combination of taxi and
bike-sharing is the most common one in co-prediction tasks,
since bike-sharing systems are often used for a last/first mile
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of transport. However, little effort has been devoted to the
demand co-prediction for taxi and ridesourcing, which is the
most common MoD services with inherent correlations. In our
work, we aim to develop a multi-task framework for demand
co-prediction of two modes, and also investigate the extension
of other more transportation modes for the co-prediction.

III. PRELIMINARIES

In this section, we first introduce several important notions,
followed by the problem statement of co-prediction for taxi
and ridesourcing demands.

A. Notions

Definition 1 (Region): A city can be segmented into a num-
ber of non-overlapping regions, i.e., V = {r1, r2, · · · , rN }.

Definition 2 (Region Demand): The region demand refers
to the number of passengers picked up by taxi or ridesourcing
car in ri at j-th time interval. Specifically, we denote these
two types of demands as x j

T A,i and x j
RS,i , where i and j refer

to the indices of the region and the time interval, respectively.
Further, the demands of N regions during the historical L
time intervals can be organized using a demand matrix. Here,
we use two symbols, i.e., XT A ∈ RN×L and XRS ∈ RN×L ,
to differentiate the demand matrix of taxi and ridesourcing.

Definition 3 (Region Graph): The region graph is defined
as G = (V, A), where V is the set of nodes (i.e., N regions);
A ∈ RN×N is the region adjacency matrix. In particular,
we will construct multiple adjacency matrices in a parame-
terized manner to characterize the spatial relationships for
different types of demands.

B. Problem Statement

Given the region graph G initialized by adaptive adjacency
matrices, and the historical demands of taxi and ridesourcing
(i.e., XT A and XRS), our goal is to simultaneously predict
the future demands YT A and YRS ∈ RN of all regions at the
forthcoming time interval. Formally, the co-prediction problem
can be formulated as:

(ŶT A, ŶRS) = F2 (XT A, XRS;G) , (1)

where F2 (·) is a function implemented by the neural network
model. Note that the graph G does not contain any predefined
adjacency matrix, instead, our model automatically learns the
adjacency matrix to guide the spatial convolution. Details on
how to derive the adaptive adjacency matrix would be given
in Section IV-B.2. In summary, the objective is to determine
the optimal function parameters 2∗ by minimizing the error
between the estimated and true values:

2∗ = arg min
2

(
L

(
YT A, ŶT A

)
+ L

(
YRS, ŶRS

))
, (2)

where L represents the loss function.

IV. THE TSIN MODEL

In this section, we introduce our proposed coupling model
named TSIN in detail, and describe how it works for the
co-prediction task of taxi and ridesourcing demands.

A. Overview of TSIN
The architecture of TSIN is shown in Fig. 2, which consists

of two twin components, and an in-between temporal and
spatial intertwined component. Each twin component (i.e., the
taxi twin or the ridesourcing twin) in the couple contains a
number of stacked spatial-temporal blocks (i.e., ST Block) and
an output layer. One ST Block is constructed by a temporal
convolutional layer and a spatial convolutional layer, which are
used to extract temporal and spatial features from the historical
demands of taxi or ridesourcing, respectively. By stacking a
number of ST Blocks, each twin can capture demand patterns
at different temporal and spatial scales separately. In addition,
the in-between temporal and spatial intertwined component
is designed to bridge the twins and allow them to exchange
information while performing feature extraction, that is, each
twin could collect the relevant information and share what is
necessary. The output layer of each twin collects the extracted
features in multiple ST Blocks by skip connections, and fuse
them for the specific prediction task.

B. The Taxi/Ridesourcing Couple

Here, we just focus on the taxi twin in the taxi/ridesourcing
couple as an example to introduce how to extract
spatial-temporal features from the historical taxi demands,
since the ridesourcing twin has the exactly same structure and
function. The taxi twin is consisted of two important kinds of
layers, i.e., Temporal Convolutional Layer (TCL) and Spatial
Convolutional Layer (SCL), which are mainly responsible of
modelling temporal dependencies and spatial dependencies
respectively, with the details as follows.

1) Temporal Convolutional Layer: Generally, the historical
demands of each region can be viewed as a time sequence.
Owing to the evolution of demand over time, its future value
is inevitably affected by the fluctuation during the recent time
period. Thus, an important aspect of the demand prediction
is to accurately capture temporal dependencies from previous
observations. To this end, we design a TCL in each ST Block
to capture intra-mode temporal dependencies by just focusing
on single transportation mode.

In more detail, the TCL is constructed based on the dilated
causal convolution [17], which is capable of extracting infor-
mation from the long sequence. Compared to the standard 1D
convolution, the dilate causal convolution makes two major
improvements: (1) It allows the convolution operation to skip
values at a certain distance in the sequence by introducing
a dilation factor, thus enabling a larger receptive field; and
(2) It only uses the information at its preceding positions by
constraining the convolution operation at the j-th position
in the sequence, thus preserving the causality of the time
sequence.

For a region ri , given its taxi demand sequence XT A(i, :
) ∈ RL , and a kernel fT A =

[
w0, w1, . . . , wK−1

]
, the dilate

causal convolution applied on the j-th (1 ≤ j ≤ L) position
of XT A(i, :) can be expressed as:

XT A(i, j) ⋆ fT A =

K−1∑
s=0

ws · XT A(i, j − d × s), (3)
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Fig. 2. The architecture of TSIN. Some important notions are also marked in the figure for the reference.

where K is the kernel size; d is the dilation factor that controls
the skipping distance.

To capture diverse patterns from the demand sequence,
we perform the convolution operation at L positions of
XT A(i, :) using Ft different kernels, which constitutes our
TCL:

X′T A(i, :) = TCLT A

(
XT A(i, :), fc

T A |
Ft
c=1

)
∈ RL ′×Ft , (4)

where X′T A(i, :) is a new feature sequence obtained after the
temporal convolution, with a new length of L ′ = L−d×(K −
1); Ft is the number of channels (also known as the feature
dimension in TCL).

Furthermore, the TCL can be conducted simultaneously
over the demand sequence of N regions:

X′T A = TCLT A (XT A) ∈ RN×L ′×Ft , (5)

where X′T A is the new demand matrix of the taxi, as well as
the final output of the TCL.

Similarly, we also design a TCL with the exactly same
structure, to extract temporal features from the ridesourcing
demand matrix XRS :

X′RS = TCLRS (XRS) ∈ RN×L ′×Ft . (6)

2) Spatial Convolutional Layer: In the real world, pas-
senger demands of different regions are often correlated to
each other. For example, two regions in close proximity or
with identical functionality may show similar changes in
demand during the same time period [40]. How to capture
these complicated spatial dependencies effectively is another
issue to be tackled in the demand prediction. Here, we first
design a graph learning sub-layer to discover the dependencies
among different regions automatically, then derive an adaptive
adjacency matrix. Afterwards, we propose a graph convolution
sub-layer to aggregate demand features from relevant regions
for each region, where the “relevant regions” are specified by

the learned adaptive adjacency matrix. In short, there are two
major tasks, i.e., graph learning and graph convolution in SCL,
detailed as follows.

Graph Learning (GL): We initialize two region embeddings
ET q , ET k ∈ RN×de for taxi demands, where de is the dimen-
sion of embeddings. The adaptive adjacency matrix of taxi
demands among N regions is computed as:

AT T = Softmax(ReLU(ET q · E⊤T k)) ∈ RN×N , (7)

where ET q , ET k are composed of learnable parameters. The
operation ET q · E⊤T k calculates the similarities between the
embedding vectors among different regions, which can be
regarded as the weights of spatial dependency. The activation
function ReLU is used to remove small weights, and the
Softmax function is applied to normalize the matrix.

It is crucial to emphasize that AT T can be updated automat-
ically during the training phase according to the error feedback
of the prediction task. For example, if the feature aggregation
of taxi demands between region r1 and r2 makes their pre-
dictions worse, the model could weaken their dependence by
reduce the value of AT T (1, 2).

Graph Convolution (GC): After obtaining the adaptive
adjacency matrix AT T , we employ the graph convolution to
model the intra-mode spatial dependencies among N regions,
similarly, by just focusing on single transportation mode.
Specifically, the graph convolutional layer takes AT T and X′T A
as inputs, to generate a new demand feature for each region by
performing aggregation and transformation operations. X′′T A is
returned by SCL. Formally, we have:

X′′T A = σ
(

AT T X′T AWT T
)
∈ RN×L ′×Fs , (8)

where WT T ∈ RFt×Fs is a projection for feature transforma-
tion; σ (·) represents the GLU activation function, and Fs is
the output dimension of the graph convolutional layer.
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Fig. 3. Multiple stacked ST Blocks with residual connections and skip
connections.

Likewise, with the exactly same network structure to the
taxi demands, we also first construct two region embeddings
ERq , ERk ∈ RN×de for the ridesourcing demands, and repre-
sent the adaptive adjacency matrix by:

AR R = Softmax(ReLU(ERq · E⊤Rk)) ∈ RN×N . (9)

Similarly again, the corresponding graph convolutional layer
is defined as:

X′′RS = σ
(

AR RX′RSWR R
)
∈ RN×L ′×Fs , (10)

where WR R ∈ RFt×Fs is a matrix that is used for the linear
transformation.

Overall, the TCL together with the SCL form a ST
Block to capture spatial-temporal dependencies simultane-
ously. To avoid the problem of gradient vanishing when
stacking blocks [34], a residual connection is added to each
block. Then, the operations of b-th block in the taxi and
ridesourcing twins can be concisely represented by:

Xb+1
T A = SCLb

T A

(
TCLb

T A

(
Xb

T A

))
+ Xb

T A,

Xb+1
RS = SCLb

RS

(
TCLb

RS

(
Xb

RS

))
+ Xb

RS, (11)

where the second term of each equation represents a residual
connection.

Figure 3 illustrates the stacking of multiple blocks with
residual connections between the input and output of each
block. In addition, the skip connections are designed to
readout the learned features by each block. In this way, the
model can collect multi-scale spatial-temporal features as the
blocks are stacked. To be more specific, the multiple temporal
convolutions in different blocks enable the model to capture
local and global variations in the demand sequence, and the
execution of multiple spatial convolutions allows the model
to aggregate the spatial information of multi-hop neighbours
hierarchically.

C. Temporal and Spatial Intertwined Component

1) Temporal Intertwined Module: Although the temporal
convolutional layers TCLT A and TCLRS can capture the
temporal dependencies from the two demand sequences sep-
arately, the inter-mode temporal dependencies between the
taxi and ridesourcing demands are overlooked. To solve the
issue, we propose a temporal intertwined module to bridge
the two separated TCLs, so that they can exchange valuable
information during the temporal dependency modelling.

First, we set up two additional convolutional layers TCL1
and TCL2 to extract temporal features as information to

Fig. 4. Diagram of the temporal intertwined module. For simplicity, the
self-gating mechanism is omitted from the figure.

be shared on the taxi and ridesourcing demand sequences,
respectively.

XSh
T A = TCL1 (XT A) ,

XSh
RS = TCL2 (XRS) . (12)

Next, to avoid passing irrelevant information between dif-
ferent sequences, a self-gating mechanism is designed to filter
the shared information:

XSh
T A = σ

(
XSh

T A

)
⊙ XSh

T A,

XSh
RS = σ

(
XSh

RS

)
⊙ XSh

RS, (13)

where σ represent the Sigmoid function.
Finally, we fuse the inter-mode feature (e.g., XSh

RS) with the
intra-mode feature (e.g., X′T A) at the last channel (i.e., L ′) of
the time dimension:

X′T A(:, L ′, :) = X′T A(:, L ′, :)+ XSh
RS(:, L ′, :),

X′RS(:, L ′, :) = X′RS(:, L ′, :)+ XSh
T A(:, L ′, :). (14)

Figure 4 gives a simplified illustration of the temporal
intertwined module, in which the red lines indicate the inter-
action of the temporal features for the two types of demands,
i.e., the exchange of information through TCL1 and TCL2.
By modeling the intra- and inter-mode dependencies, the final
temporal features X′T A and X′RS are capable of incorporating
both the demand patterns of taxi and ridesourcing.

2) Spatial Intertwined Module: As mentioned before, the
spatial dependencies in this work are also two-fold, i.e., the
intra- and inter-mode dependencies. For example, the taxi
demand in a region is not only related to the taxi demands of
other regions, but may also be influenced by the demands for
ridesourcing. However, the SCL in the ST Block is designed
only for modelling intra-mode spatial dependencies of one
type of demand, failing to capture the spatial interactions
between two modes of demands. Thus, we design an addi-
tionally spatial intertwined module to couple the two SCLs in
the twin components, detailed as follows.

First, we reuse the region embeddings obtained in spa-
tial dependency modelling to further construct the adjacency
matrices between taxi and ridesourcing demands:

ART = Softmax(ReLU(ERqE⊤T k)) ∈ RN×N ,

AT R = Softmax(ReLU(ET qE⊤Rk)) ∈ RN×N , (15)

where a row in ART indicates the relation between the taxi
demand of one region and the ridesourcing demand of other
regions, while AT R represents the opposite relation. It is
worth noting that all adaptive adjacency matrices are derived
from low-dimensional region embeddings, which requires only
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Fig. 5. Diagram of the spatial intertwined module.

a small number of parameters and makes the intra- and
inter-mode adjacency matrices associate with each other at
the very underlying level.

Then, we build two graph convolutional sub-layer GCRT
and GCT R to extract cross-mode spatial features with the
support of ART and AT R , respectively:

XCr
RS = σ

(
ART X′RSWRT

)
,

XCr
T A = σ

(
AT RX′T AWT R

)
, (16)

where WRT , WT R ∈ RFt×Fs are two feature transformation
matrices.

Finally, we incorporate the inter-mode feature (e.g., XCr
RS)

into the intra-mode feature (e.g., X′′T A). Formally, we have:

X′′T A = X′′T A + XCr
RS,

X′′RS = X′′RS + XCr
T A. (17)

The above process is demonstrated in Fig. 5. In a nutshell,
the spatial intertwined module achieves the cross-mode fusion
of spatial features through two graph convolution operations
based on matrices ART and AT R , respectively. Essentially,
the model equips each SCL with two receptive fields, thus
enabling one region to aggregate both taxi and ridesourcing
demand features from the other regions.

D. Output Layer

As mentioned before, the extracted spatial-temporal features
in stacked blocks are at different temporal and spatial scales.
To take advantage of these rich features, we collect the
output of all blocks through skip connections, then concatenate
them together and then feed into a two-layer fully connected
network to make the final predictions. The output layers of
the taxi/ridesourcing couple can be expressed as:

ŶT A = σ
(

Concat
[
Xb

T A |
B
b=1

]
W1

)
W2,

ŶRS = σ
(

Concat
[
Xb

RS |
B
b=1

]
W3

)
W4, (18)

where B is the number of ST Blocks; W1, W3 ∈ RB Fs×Fh and
W2, W4 ∈ RFh×1 are learnable weights; and σ (·) is the ReLU
activation function.

E. Learning Optimization

Here, we use the Mean Squared Error (MSE) as the loss
function to evaluate the error of taxi and ridesourcing demand
predictions as follows:

L1 = MSE
(

YT A, ŶT A

)
,

L2 = MSE
(

YRS, ŶRS

)
. (19)

In addition, we employ the uncertainty weighting mecha-
nism [16] to balance L1 and L2, thus the final loss function
is defined as:

L(σ1, σ2) =
1

2σ 2
1
L1 +

1
2σ 2

2
L2 + log σ1σ2, (20)

where σ1 and σ2 are two noise parameters, which are used
to balance the task-specific losses during training and can be
updated through back-propagation.

Algorithm 1 The Learning Process of TSIN
Input: The historical demands XT A, XRS ;
Output: The predicted demands ŶT A, ŶRS

1: Init: ET q , ET k, ERq , ERk
2: X1:B

T A = ∅, X1:B
RS = ∅

3: X1
T A = XT A, X1

RS = XRS
4: for b ∈ [1, B] do
5: Xb,′

T A, Xb,′
RS ← perform TCL by Eqns. 5 and 6

6: Update Xb,′
T A, Xb,′

RS by Eq. 14
7: AT T , AR R ← graph learning by Eqns. 7 and 9
8: Xb,′′

T A, Xb,′′
RS ← perform SCL by Eqns. 8 and 10

9: ART , AT R ← graph learning by Eq. 15
10: Update Xb,′′

T A, Xb,′′
RS by Eq. 17

11: Xb+1
T A ← Xb,′′

T A + Xb
T A, Xb+1

RS ← Xb,′′
RS + Xb

RS // residual
connection

12: X1:B
T A ∪ {X

b+1
T A }, X1:B

RS ∪ {X
b+1
RS } // skip connection

13: end for
14: ŶT A, ŶRS ← perform output layers by Eq. 18
15: L← calculate losses by Eqns. 19 and 20
16: Back-propagate L and optimize the model

Algorithm 1 overviews the pseudo-code for the learning
process of TSIN. First, the model takes the demand matrices
XT A and XRS as the input, and randomly initializes the
region embeddings for graph learning (Lines 1∼3). Then,
the inputs pass through B stacked blocks in twins and
the intertwined component to model intra- and inter-mode
dependencies systematically. As shown in Line 4∼13, we can
extract the spatial-temporal features of different scale at each
block. Next, the future demands for taxi and ridesourc-
ing can be predicted using the multi-scale features by Eq.
18. Finally, the loss function is calculated and optimized
in Lines 15∼16.

V. EXPERIMENTS

In this section, we firstly introduce the details of the
experiments, including real-world datasets, the state-of-the-art
baselines, and the hyper-parameter settings. Then, we present
the experiment results, including the performance at different
time and on different regions, the interpretability of our model,
and the ablation study. Finally, we present the comparison
results in terms of prediction accuracy and computational
efficiency with the 11 baselines to highlight the superiority
of the model. The source code for TSIN is available at
https://github.com/csjiezhao/TSIN.
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TABLE II
DATASET DESCRIPTION

A. Datasets

We conduct experiments on four real-world trip datasets
generated by taxi and ridesourcing cars in two representative
cities in US, i.e., New York (NYC)1 and Chicago (CHI)2:
• NYC-Taxi: It contains trip records of green and yellow

taxi in Manhattan, NYC. Each record mainly includes
pickup date time, pickup region (i.e., the taxi zone in
NYC), dropoff date time, and dropoff region.

• NYC-FHV: It consists of trip records reported by
for-hire vehicles (FHV) such as Uber and Lyft, including
trip-specific information such as pickup and dropoff time,
origin and destination region. It provides the information
about ridesoucing demand in NYC.

• CHI-Taxi: It collected trip records of Chicago Taxi, each
record includes the trip start/end timestamp and the
pickup/dropoff region (i.e., the community area).

• CHI-TNP: It contains trip records reported by Transporta-
tion Network Providers (TNP) in Chicago. It provides the
information about ridesoucing demand in CHI.

More detailed information for the datasets is summarized
in Table II. For each dataset, we set the time interval as
30 minutes, and count the number of pickups in all regions
at each time interval to construct the demand matrix. Training
set, validation set and test set are partitioned according to the
ratio of 7:1:2. Then we use Z-Score normalization to scale the
input features. Historical demands of the most recent 12 time
intervals are used to predict the demands at the next one.

In addition, we use one more dataset (i.e., NYC-POI) to
validate the interpretability of our model. The dataset contains
5,343 points of interests in 63 regions of Manhattan. Each POI
is with a category tag clearly showing its functionality, such
as “education facility” and “transportation facility”. We count
the number of POIs in each category for each region, and then
obtain the POI distributions of all regions.

B. Baseline Methods and Evaluation Metrics

• HA: Historical average is a very basic statistical method
for prediction. It predicts the target demand by simply
averaging all the historical values.

• FC-LSTM [28]: LSTM with a Fully Connected (FC)
layer is widely used for time sequence modelling. The
size of the hidden state is set to 256.

• DCRNN [18]: It proposes a diffusion graph convolution
module to model the traffic flow as a diffusion process,
and integrates the module into a seq2seq framework to
predict traffic series data.

1https://opendata.cityofnewyork.us/
2https://data.cityofchicago.org/

• T-GCN [49]: Temporal GCN combines general graph
convolution and GRU to extract spatio-temporal corre-
lations in traffic data for prediction.

• ASTGCN [11]: An attention-based network, which
designs spatial and temporal attention mechanisms to
capture dynamic patterns in traffic data.

• STSGCN [26]: This model designs a spatial-temporal
synchronous modeling mechanism to capture the local-
ized correlations for traffic prediction.

• AGCRN [2]: It proposes an adaptive graph convolutional
recurrent network to capture spatial-temporal correlation
from traffic data in an automatic manner.

• MTGNN [34]: This is a framework for modeling multi-
variate time series data and learning graph structures.

• CCRNN [42]: This is an adaptive graph based model
with a layer-wise coupling mechanism.

• GMSDR [21]: This model is a novel recurrent neural
network for capturing multi-step dependency relation,
and also considers spatial information to support general
spatial temporal prediction.

• CoGNN [22]: It proposes a framework for co-prediction
of station-based multi-modal transportation demands.

For a fair comparison, the input to all method on two
datasets are the same, that is, the historical demands of past
L = 12 time intervals. For the hyper-parameters, we choose
the default values according to their origin proposals.

To evaluate the performance of all methods, we employ
three metrics: Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Root Mean Squared Error
(RMSE), which are defined as follows:

MAE(y, ŷ) =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣

MAPE(y, ŷ) =
1
n

n∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣ ,
RMSE(y, ŷ) =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2
, (21)

where y and ŷ the true and predicted values, respectively.
Notice that MAE is a widely used measure for absolute

error; MAPE considers the ratio of the absolute error with
respect to the ground-truth, but it receives more punishments
for smaller true values; RMSE is more sensitive to outliers.
Therefore, the combination of three metrics evaluates the
performance of inference methods more comprehensively.

C. Experimental Settings

We implement our TSIN model using Pytorch on a work-
station running Ubuntu OS (GPU: GeForce RTX 2080 Ti).
The maximum training epoch is set as 500. The learning rate
is set as 0.001 and the batch size is 64. We employ the Adam
optimizer to minimize the loss function. The hyper-parameters
of our model are determined by comparing the performance
on the validation set, which are given in Table III.
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TABLE III
HYPER-PARAMETER SETTING

Fig. 6. The average error values and actual demand values at different hours
over a day.

D. Results and Analysis

1) Performance at Different Time: In this part, we inves-
tigate the performance of our model from the temporal
dimension. Since the human mobility behaviour varies within
a day, the performance at different hours shows the impact
of human activity on the demand prediction. Figure 6 reports
the results on taxi dataset and ridesourcing dataset in NYC,
respectively. In each of the figures, we plot the average
error values with curves and the actual demands with bars
at different hours over a day. Note that, to keep the different
metrics studied at the same scale, we multiply RMSE value
by 0.4. We can observe that:
• The curves of MAE (purple) and RMSE (green) are

affected by the changes of the actual demand, i.e., the
larger the actual demand value, the larger the abso-
lute error. Larger demands reveal that more complicated
human activity and mobility are taken place at that
moment. It increases the difficulty in making accurate
predictions, thus the absolute errors and the root mean
squared of absolute errors raise with the demands increas-
ing.

• MAPE changes, however, in the opposite way with the
other two. This is because that the percentage absolute
error is sensitive to the small actual demand. For example,

Fig. 7. MAE over different regions for demand predictions. Region 1⃝:
Penn. Station; 2⃝: Lincoln Square East; 3⃝: Midtown Center; 4⃝: East Village;
5⃝: West Chelsea.

the actual demands are the lowest at 4 am when the
human traveling is the most inactive. The slight difference
between the predicted demand and the actual demand
would be magnified as divided by a small demand value.
That explains why we observe the peak of MAPE and
valleys of MAE and RMSE at the same hours.

• The performance on both datasets are similar. When the
actual demand is low during 0 am to 6 am, the absolute
error MAE is the lowest and MAPE is the highest. In the
rest of the day, MAE goes higher and MAPE goes lower.
Overall, RMSE and MAE have similar trend except that
RMSE is magnified comparing with MAE.

2) Performance on Different Regions: Similarly, we inves-
tigate the model’s performance on different regions of
Manhattan, and Fig. 7 (a) and (b) display the distribution of
MAE over regions for the taxi dataset and ridesourcing dataset,
respectively. Here only MAE values are used to indicate the
error levels, since RMSE has very similar distribution and
MAPE is sensitive to the small actual demand values.

In the maps, the regions with darker color are the regions
with higher prediction errors. It clearly shows that the spatial
distribution of the errors is non-uniform, and the regions
with larger errors are clustered mainly in Midtown Manhattan
and Lower Manhattan. The top three regions with the largest
prediction errors in each map are marked, i.e., region 1⃝∼ 3⃝
in Fig. 7 (a), and region 3⃝∼ 5⃝ in Fig. 7 (b), respectively.
We notice that these regions are the busy commercial or
residential districts, and often with lots of travel demands. The
reason for the larger error on these regions could be twofold.
First, predicting large demand values is prone to have large
absolute errors. Second, plenty of crowd movements in popular
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Fig. 8. Prediction results on Region 3⃝.

regions contain diverse and complicated travel patterns, which
brings difficulties in making accurate demand prediction.

Nevertheless, in the real world, it is important for traffic
management to provide reliable demand prediction in popular
regions. Thus, we focus on region 3⃝, the Midtown Center
area, which has relatively high error level and is marked in
both maps, and we look deeper into the predicted and the
actual demand values. The results of comparison are shown
in Fig. 8. The red curves indicate the ground truth values of
the demand, and the blue curves are the prediction from our
model. It shows that our model can capture the demand pattern
over time, and for most of the time our model is very accurate
in tracing the ground truth curves even at peaks and valleys
where value changes at a sudden. The result expresses that
our model is still effective in the popular regions with heavy
traffic and can provide accurate predictions.

3) Interpretability: Furthermore, we study the interpretabil-
ity of our model. In TSIN model, one important step is
to construct multiple adaptive adjacency matrices to guide
the modelling of intra- and inter- mode spatial dependencies.
Essentially, the model discovers and constructs the correlations
among regions in a data-driven way. Here, we go deeper into
these learned matrices, and compare them with some prior
knowledge (i.e., geographical proximity and POI distribution).
By analyzing the results, we hope to shed some light on
opening the black-box of our deep model.

We firstly define two types of neighbours of a center region
by using the geographical proximity and POI distribution
information respectively: (1) Geographical neighbours: all the
regions that geographically connected to the center region;
and (2) Functional neighbours: the top-5 regions that have the
most similar POI distribution with the center region (the cosine
similarity is adopted to calculate the similarity). Then we take
regions r10 and r22 in Manhattan as examples and compare
their geographical neighbours, functional neighbours, and top-
5 learned neighbours that come from the adaptive adjacency
matrices with the top-5 highest weights.

The visualization of the result is shown in Fig. 9. In these
maps, we mark the center regions in red, their geographical
neighbours in green, their functional neighbours in blue, and
the neighbours that are both geographical and functional in
orange. Their learned neighbours from different adjacency
matrices are also displayed by the maps. We can draw the
following conclusions:

• Taking r10 as an example, when predicting its taxi
demands, it will simultaneously learn the taxi-
impact-on-taxi-demand neighbours (AT T (10)) and
the ridesourcing-impact-on-taxi-demand neighbours

Fig. 9. Learned neighbours of region r10 and r22.

(ART (10)), respectively. It shows that both sets of
learned neighbours overlap with r10’s geographical
neighbours and its functional neighbours, even though
this prior knowledge is not input to our model. This
demonstrates that our method can discover knowledge
in a data-driven way as expected.

• Similarly, when predicting r10’s ridesourcing demands,
our model will learn its ride-impact-on-ride-demand
neighbors AR R(10) and taxi-impact-on-ride-demand
neighbors AT R(10). The difference between AR R(10)

and AT R(10) shows the overall diversity of spatial depen-
dencies. Moreover, it also implies the distinct difference
between intra-mode and inter-mode.

• As for r22, we can have observations similar to the
above two. In addition, combining the results of r10
and r22, we have the following findings. First, the geo-
graphic proximity is indeed the efficient prior knowledge.
Especially for r22, the model aggregates information
from most of its geographically neighbours. Thus, the
geographic proximity is a choice worth to consider
when modeling the spatial dependencies. Second, we can
observe that, one region’s neighbours, which have spatial
dependencies with it, are widely distributed in the map.
They could be the regions that actually connect to the
center region, but also the regions far away with similar
POI distribution.

Therefore, it is not sufficient to model the spatial dependen-
cies by using adjacency matrices based on the geographical
proximity only. This type of adjacency matrix can only
describe the relations between local regions, and can hardly
capture the extensive spatial dependencies as aforementioned.
This is also the motivation of most works on capturing spatial
dependencies by constructing in multi-graph. Worse still, quite
a big number of learned neighbours are neither geographical
nor functional ones of the center regions. Such result implies
that the spatial dependency of urban transportation systems is
quite complex and heterogeneous and cannot be predefined.
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Fig. 10. Ablation study on NYC-Taxi and NYC-FHV datasets.

4) Ablation Study: To verify the effectiveness of our model,
we conduct the ablation study on NYC-Taxi and NYC-FHV
datasets. We compare our model with the following variations:

• TSIN #1: It removes both spatial and temporal inter-
twined modules;

• TSIN #2: It removes the spatial intertwined module;
• TSIN #3: It removes the temporal intertwined module.

Despite the removed modules, all variations have the same
framework and parameter settings. We repeat each experiment
3 times and take the average as the results. The corresponding
performance comparison are shown in Fig. 10. The height of
the bars indicates the average errors of different variations with
different metrics. We can observe that:

• Removing spatial or temporal intertwined modules,
or both, from original TSIN, the prediction error will
increase in varying degrees, which fully validates the
effectiveness of modeling the inter-mode dependencies.
The spatial/temporal intertwined modules in our model
are able to improve the prediction accuracy for both
mode.

• Mostly, the improvements of adding only spatial or only
temporal intertwined module are quite limited and nearly
equivalent, while adding both of them could achieve
significant improvement. It demonstrates that this infor-
mation exchange between different modes helps to reduce
the prediction difficulty, and this interaction in spacial and
temporal dimension are equally important.

• The change of the error on the ridesourcing dataset
is more significant than that on the taxi dataset. That
indicates the ridesourcing twin can benefit relatively more
from the taxi twin. One of the reasons could be that,
the passenger load for taxis in Manhattan is over around
20% more than ridesourcing in 2018 according to the
statistics of the dataset. Thus, the taxi data contains more

rich and complete features of human mobility than the
ridesourcing data does.

E. Comparisons With Baselines

1) Overall Performance: In this part, we conduct the exper-
iments of our model and all other baselines on not only New
York datasets but also Chicago datasets to demonstrate its
generalization. Comparison results are shown in Table IV. The
smallest error values in each column are highlighted in bold.
We can observe that:
• The performance of HA and FC-LSTM are the worst

among all baselines, though FC-LSTM is slightly better
than HA. These two methods consider only the temporal
correlations and ignore the dependencies between regions.
Their high error values express the importance and neces-
sity of modeling the spatial dependencies.

• The methods based on the adaptive graph generally
perform better than the methods based on the predefined
graph. More specifically, methods, such as DCRNN,
T-GCN, ASTGCN and STSGCN, need an adjacency
matrix to be input and further model the spatial depen-
dencies. By contrast, MTGNN, CCRNN and GMSDR
construct a adaptive adjacency matrix that can discover
the hidden correlations among regions from data. It helps
to model more complicated spatial dependencies and
achieve the higher prediction accuracy eventually.

• In general, co-prediction methods are better than the
methods that consider only one mode. Our method TSIN
achieves the best performance with the lowest errors on
New York datasets. Both CoGNN and TSIN integrate the
prediction tasks of two modes into one framework and
model the interaction between modes. Such additional
information from other mode could help to improve
the demand prediction. While CoGNN focuses on the
interaction of modes from the spatial perspective only,
our TSIN models the inter-mode dependencies from both
spatial and temporal perspectives. In this sense, it is more
capable of learning the spatial-temporal features, and that
leads to better results consequently.

• The experiments on CHI datasets verify the generalization
of our model. The results are presented on the right side
of Table IV. The MAE and RMSE values of TSIN on
Chicago taxi and ridesourcing datasets are the lowest in
their corresponding columns. It shows that our model
achieve the lowest absolute errors. However, the MAPE
values are relatively high, especially on the taxi dataset.
The reason could be that, the MAPE is sensitive to the
actual demand number and the taxi demand of Chicago is
more sparse compared to the ridesourcing demand. And
the small demand value leads to significant MAPE value
as mentioned. As a matter of fact, this high MAPE value
happen to not only TSIN but also all other baselines.

2) Computational Efficiency: Last but not least, we evaluate
the computational efficiency based on NYC datasets from three
perspectives: the number of parameters, the training time and
the inference time. Our model and all neural network based
baselines are evaluated under the same conditions for a fair
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON NEW YORK AND CHICAGO DATASETS

TABLE V
RESULTS ON COMPUTATIONAL EFFICIENCY

comparison. The results are reported in Table V. It can be
observed that:
• Although FC-LSTM achieves the shortest training time

and inference time, it has the lowest prediction perfor-
mance among all these neural based models (i.e., the
highest MAE, MAPE and RMSE values on all datasets
in Table IV except HA).

• TSIN has a moderate model complexity and relatively
short training and inference time. It is slightly longer
than T-GCN, which has the smallest model size with the
fewest parameters. However, T-GCN shows the second
worst performance among neural network based models
in Table IV.

• Both CoGNN and TSIN are designed for multi-task co-
prediction, but TSIN is better since it is almost two times
faster than CoGNN in terms of training and inference
(2.03 and 1.71 times, respectively) with only 54% of
CoGNN’s model size.

VI. DISCUSSION

In this section, we discuss the generalization performance
of the proposed TSIN model in coupling more transporta-
tion modes. Specifically, we intend to integrate the bike
demand data from NYC and conduct the co-prediction task
for taxi, ridesourcing, bike simultaneously. The NYC-Bike
dataset includes 13,488,880 trip records of Citi Bike stations
in Manhattan during 2018. It is important to note that the bike
data is station-centric, thus we aggregate trips from all bike

stations within each region to count region-level bike demands,
and then perform the same data preprocessing as NYC-Taxi
dataset. Moreover, the bike stations cover only 56 regions of
Manhattan, therefore, to ensure that multi-mode demands are
spatially aligned, we use only taxi and ridesourcing demands
from these 56 regions when co-predicting.

Due to the similarity among spatial-temporal prediction
tasks, the bike twin can directly reuse the same neural network
structure as the other two twins, that is, no further extra
network design is required. In the intertwined component,
we just need to add several relatively small and lightweight
spatial-temporal modules to link the twins to each other for
sharing information. Thus, it is safe to claim our TSIN model
is highly flexible and easy extendable when coupling more
types of demand data.

Furthermore, we aim to address the following two issues: (1)
for n transportation modes in the urban transportation system,
how many coupling combinations in total; and (2) for the three
specific demand data, which coupling combination yields the
best co-prediction result and why.

Theorem 1: The problem of determining the number of
coupling combinations (Bn) for n transportation modes is
equivalent to the one of determining the number of partitions
for a set containing n elements.

Proof: The theorem is easy to understand and the
proof is quite straightforward. Thus, the number of coupling
combinations can be computed using the following recursive
formula:

Bn+1 =

n∑
k=0

Ck
n Bn−k, (22)

where B0 = B1 = 1.
According to Eq. 22, there would be 5 coupling combina-

tions in total when n = 3, listed as follows: Combination
I: {{Taxi}, {Ridesourcing}, {Bike}}, which indicates each
mode works independently and perform the prediction indi-
vidually; Combination II: {{Taxi, Ridesourcing}, {Bike}},
which indicates taxi and ridesourcing modes work together in
the co-prediction task while bike mode works independently
and performs the prediction individually; Combination III:
{{Taxi, Bike}, {Ridesourcing}}, which indicates taxi and bike
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT COMBINATIONS ON 56 REGIONS OF MANHATTAN

modes work together and perform the co-prediction while
ridesourcing mode works independently and performs the
prediction individually; Combination IV: {{Taxi}, {Bike,
Ridesourcing}}, which indicates bike and ridesourcing modes
work together and perform the co-prediction while taxi mode
works independently and performs the prediction individually;
and Combination V: {{Taxi, Ridesourcing, Bike}}, which
indicates all three modes work together and perform the co-
prediction simultaneously.

Table VI reports the performance comparison of different
coupling combinations. The colored numbers in each row
represent that the corresponding mode works independently
in that coupling combination, and the best results in each
column are highlighted in bold. Please note that the study
area in Table VI contains only 56 regions in Manhattan, such
a sub-area does not fully reflect the spatial dependencies within
original travel demands for the entire Manhattan. This may be
the reason for the worse results in Table VI compared to IV.
Further, we can find that:
• All best results do not appear in the first row of the table,

indicating that coupling different types of demands into a
unified co-prediction framework is indeed effect. In other
words, it confirms our proposition of “coupling makes
better” in this work.

• On the contrary, most best results appear in the sec-
ond row of the table, clearly demonstrating the best
combination happens to the case of coupling taxi and
ridesourcing, and leaving bike alone. This is probably due
to that passengers taking bike for quite different purposes
(e.g., connecting trip, short travel) comparing to taxi and
ridesourcing. Thus, it is reasonable that we couple taxi
and ridesourcing for co-prediction, although our original
decision is based on the domain knowledge.

• Just a few best results appear in the last row of the table,
implying that “many could be better than all”. Neverthe-
less, how to discover the best coupling combination for
co-prediction is non-trivial and it should be a separated
research problem that is worth exploring in the future.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-task learning framework
named TSIN for multi-mode co-prediction. Specifically, the
framework contains a taxi twin component and ridesourcing
twin component, which performs the prediction for each mode,
respectively. The twin components have exactly the same
structure that contain a number of stacked blocks composed

of temporal and spatial convolutional layers, to capture the
intra-mode dependencies. Furthermore, we also design a tem-
poral and spatial intertwined component to bridge the twins
for learning the inter-mode spatial temporal dependencies.
Extensive experiments conducted on four real-world datasets
demonstrate the effectiveness and superiority of TSIN.

In the future, we plan to broaden and deepen this work
in the following directions. First, we plan to incorporate
mode-shifting behaviours such as ‘jockeying’ explicitly into
the deep model in a theory-guided/physical informed manner.
Second, we plan to design twin components with hetero-
geneous network structures. Generally, different modes of
transportation services have heterogeneous traffic nodes (such
as bus stations and taxi zones), and the spatial-temporal
patterns of different modes could also be diverse, thus it
may be better to design the mode-specific neural network
architecture for the mode-specific demand prediction [31].
Moreover, the most suitable coupling method between the dif-
ferent transport modes also needs to be elaborately designed.
Finally, we intend to investigate the impact of zone/grid size
on multi-mode demand prediction if the spatially fine-grained
traffic data is available.
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