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Abstract—The rapid development of positioning technology
produces an extremely large volume of spatio-temporal data with
various geometry types such as point, line string, polygon, or a
mixed combination of them. As one of the most fundamental but
time-consuming operations, 𝑘 nearest neighbors join (𝑘NN join)
has attracted much attention. However, most existing works for
𝑘NN join either ignore temporal information or consider only
point data. Besides, most of them do not automatically adapt to
the different features of spatio-temporal data.

This paper proposes to address a novel and useful problem, i.e.,
ST-𝑘NN join, which considers both spatial closeness and temporal
concurrency. To support ST-𝑘NN join over a large amount of
spatio-temporal data with any geometry types efficiently, we
propose a novel distributed solution based on Apache Spark.
Specifically, our method adopts a two-round join framework.
In the first round join, we propose a new spatio-temporal
partitioning method that achieves spatio-temporal locality and
load balance at the same time. We also propose a lightweight
index structure, i.e., Time Range Count Index (TRC-index), to
enable efficient ST-𝑘NN join. In the second round join, to reduce
the data transmission among different machines, we remove
duplicates based on spatio-temporal reference points before
shuffling local results. Furthermore, we design a set of models
based on Bayesian optimization to automatically determine the
values for the introduced parameters. Extensive experiments are
conducted using three real big datasets, showing that our method
is much more scalable and achieves 9X faster than baselines,
and that the proposed models can always predict appropriate
parameters for different datasets. The source codes are released
at https://github.com/Spatio-Temporal-Lab/stknnjoin.

Index Terms—Distributed computing, spatio-temporal 𝑘NN
Join, knob tuning, Bayesian optimization, AI4DB.

I. INTRODUCTION

W ITH the rapid development of positioning technology,
an extremely large number of spatio-temporal data are

generated. Among spatio-temporal data analyses, 𝑘 nearest
neighbors join (𝑘NN join) [2]–[6] is one of the most fun-
damental operations, which is crucial in many applications.
As shown in Fig. 1(a), in the case of epidemic prevention [7],
given a set of check-ins of the infected patient 𝑢1, 𝑘NN join
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Fig. 1. Motivation of ST-𝑘NN Join.

(𝑘 = 1) finds the nearest user of each check-in point. Most
existing solutions consider only the spatial closeness, so they
find 𝑢2 for 𝑝1, 𝑢3 for 𝑝2, and 𝑢3 for 𝑝3, respectively. As a
result, both 𝑢2 and 𝑢3 are of potentially vulnerable population
and should be isolated. However, if we consider the temporal
concurrency as well, 𝑢3 is no longer the nearest to 𝑝2, because
they appeared at different times (i.e., 𝑡2 and 𝑡4, respectively).
Similarly, 𝑢3 is not the nearest to 𝑝3. In the end, only 𝑢2 is
the potentially suspected user, which brings in a more precise
epidemic prevention.

This paper proposes Spatio-Temporal 𝑘 Nearest Neighbors
join (i.e., ST-𝑘NN join) that considers both spatial closeness
and temporal concurrency. It can be applied to many other
applications such as ride-sharing [8]–[11], companion detec-
tion [12]–[14] and travel recommendation [15]–[17], all of
which cannot ignore the temporal information.

It is challenging to perform ST-𝑘NN join for four reasons.
1) Big Data. Spatio-temporal data are generated constantly at
a high frequency, leading to a prohibitively large volume of
data. In contrast, ST-𝑘NN join itself is rather time-consuming.
Merely extending the standalone spatial-related join solu-
tions [18]–[20] cannot handle such big spatio-temporal data
efficiently. 2) High Dimensionality. In addition to spatial
information, we should also consider the temporal information,
which is more intractable. 3) Various Geometry Types.
Spatio-temporal data comes with various geometry types, e.g.,
points of check-ins, line strings of trajectories, and polygons
of stay points [21], as shown in Fig. 1(b). It sometimes
requires to perform ST-𝑘NN join on all geometry types or
even a mixture of them. But it is difficult to design a unified
framework that supports ST-𝑘NN join for all geometry types.
4) Unbalanced and Various Distribution. The distribution of
spatio-temporal data is highly skewed. For example, downtown
areas contain more taxi trajectories than suburb areas, and
more taxi trajectories can be discovered during rush hours
than other time periods [22]. Different spatio-temporal data
have different distributions that affect the efficiency of ST-𝑘NN
join. To achieve efficient ST-𝑘NN join, the system parameters



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

should be fine-tuned for every request, which is intractable.
Over the last decade, there emerged many distributed frame-

works, e.g., Apache Hadoop [23] and Apache Spark [24],
which cope with big data efficiently. Many distributed
works [2]–[6] for 𝑘NN join ignore the temporal information,
therefore they cannot be applied to ST-𝑘NN join directly.
Besides, most of them [2], [4]–[6] are designed based on
triangle inequality that is only fit for the distance between
two points, so they do not support complex geometries such
as line strings and polygons. Moreover, most works [4]–[6] do
not provide adaptive techniques to determine some important
system parameters (a.k.a. knobs) for different datasets. It is
hard if not impossible for users to fine-tune good knobs
manually for every request. Other systems such as Simba [2]
and LocationSpark [3], [25] deploy cost models for some
spatial or spatio-temporal operations, but not for ST-𝑘NN join.

As a result, this paper proposes a novel distributed solution
based on Apache Spark, which supports ST-𝑘NN join with
various geometry types efficiently. Specifically, our solution
follows a two-round join framework. In the first round join, we
first partition the objects according to the spatio-temporal dis-
tribution, then find a distance bound for each object, such that
its 𝑘 nearest neighbors considering both spatial closeness and
temporal concurrency must locate in a specific region. In the
second round join, we first perform a local ST-𝑘NN join to get
local results, and then merge them into a global one. Moreover,
we design a set of models based on Bayesian optimization to
automatically determine good values for the introduced system
parameters. As a result, our method is adaptive to different
features of various spatio-temporal datasets. ST-𝑘NN join is
deployed to the product JUST (JD Urban Spatio-Temporal data
engine) [26]–[32], where the spatio-temporal data is stored in
a NoSQL database with carefully designed indexes. In JUST,
users can execute ST-𝑘NN join with a standard SQL statement.
Overall, the contributions of this paper are five-fold:

(1) This paper proposes a novel and useful ST-𝑘NN join
problem, and presents a distributed solution that supports ST-
𝑘NN join with any geometry types efficiently.

(2) We propose a new spatio-temporal partitioning method
that achieves spatio-temporal locality and load balance at
the same time. We devise a lightweight but effective index
structure called Time Range Count Index (TRC-index), which
returns the minimum number of satisfied objects in a partition.
To reduce the data transmission among different machines, we
remove duplicates based on spatio-temporal reference points
before shuffling local results.

(3) We design a set of models based on Bayesian optimiza-
tion to determine the values of introduced system parameters
automatically, which guarantees that our ST-𝑘NN join method
performs well for various datasets with different distributions,
different sizes and various geometry types.

(4) We deploy ST-𝑘NN join to JUST, with which an ST-
𝑘NN join can be performed with a standard SQL statement.

(5) Extensive experiments are carried out using three real
datasets, which verifies the efficiency and scalability of our
method and the effectiveness of the knob tuning models. All
source codes are released [33].

TABLE I
SYMBOLS AND THEIR MEANINGS

Symbol Meaning
𝑅 (resp. 𝑆) an ST-object set 𝑅 (resp. 𝑆)

𝑟 (resp. 𝑠) an ST-object 𝑟 ∈ 𝑅 (resp. 𝑠 ∈ 𝑆), where 𝑟 .𝑔𝑒𝑜𝑚 is a
spatial attribute, 𝑟 .𝑡𝑟 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ] is a time range

𝑀𝐵𝑅 (𝑟 ) the minimum bounding box of 𝑟

𝐸𝑀𝐵𝑅 (𝑟,𝛾 ) the expanded minimum bounding rectangle of 𝑟
w.r.t a distance threshold 𝛾

𝑇𝐷 (𝑅), 𝑆𝐷 (𝑅) the temporal domain and spatial domain of 𝑅
𝐸𝑇𝑅 (𝑡𝑟, 𝛿 ) expanded time range of 𝑡𝑟 with a time threshold 𝛿

ST-𝑘NN the spatio-temporal 𝑘 nearest neighbors of 𝑟
(𝑟, 𝑘, 𝛿, 𝑆) from 𝑆 with a time threshold 𝛿

𝑑 (𝑟, 𝑠 ) , the distance between 𝑟 and 𝑠, and the Euclidean
𝑑 (𝑝,𝑞) distance between two spatial points 𝑝 and 𝑞

𝑅 ⋉ 𝑆 ST-𝑘NN join of 𝑅 and 𝑆

𝐺𝑇,𝐺𝑆 global temporal domain, global spatial domain

𝜂, 𝛼 , 𝛽 sampling rate, maximum number of temporal
partitions, maximum number of spatial partitions

𝑡𝑝, 𝑠𝑝, 𝐺𝐼 temporal partitions, spatial partitions, global index
TRC-index temporal range count index
𝑏𝑖𝑛𝑁𝑢𝑚 bin number in a TRC-index
TRP, SRP temporal reference point, spatial reference point

Outline. We give some preliminaries in Section II, and
describe the overview of ST-𝑘NN Join Executor in Section III.
The details of ST-𝑘NN Join Executor are presented in Sec-
tion IV. We propose knob tuning models in Section V. In
Section VI, we analyze the performance of ST-𝑘NN join
theoretically. We present the evaluation results in Section VII,
followed by the implementation details in JUST in Sec-
tion VIII. We review the related works in Section IX. Finally,
we conclude this paper in Section X. Table I lists the symbols
and their meanings used frequently throughout this paper.

II. PRELIMINARY

A. Definition

Definition 1. (Clustering) ST-object (spatio-temporal object)
𝑟 = (𝑔𝑒𝑜𝑚, 𝑡𝑟 ) contains a spatial attribute 𝑔𝑒𝑜𝑚 and a time
range 𝑡𝑟 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ], where 𝑔𝑒𝑜𝑚 can be any geometry (e.g.,
a point, a line string, a polygon, etc., or a mixed set of them).
The time span of 𝑟 is defined as |𝑡𝑟 | = 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 .

Note that 𝑡𝑚𝑖𝑛 = 𝑡𝑚𝑎𝑥 is a special case of our definition. In
the following, we call an ST-object object for simplicity.

Definition 2. (MBR and EMBR) The MBR (Minimum
Bounding Rectangle) of an object 𝑟 is the smallest axis-aligned
rectangle that contains all points of 𝑟 .𝑔𝑒𝑜𝑚, which can be
represented by 𝑀𝐵𝑅(𝑟 ) = ⟨(𝑙𝑎𝑡𝑚𝑖𝑛, 𝑙𝑛𝑔𝑚𝑖𝑛), (𝑙𝑎𝑡𝑚𝑎𝑥 , 𝑙𝑛𝑔𝑚𝑎𝑥 )⟩.
Its EMBR (Extended Minimum Bounding Rectangle) with
regard to a distance threshold 𝛾 is defined as 𝐸𝑀𝐵𝑅(𝑟, 𝛾) =

⟨(𝑙𝑎𝑡𝑚𝑖𝑛 − 𝛾, 𝑙𝑛𝑔𝑚𝑖𝑛 − 𝛾), (𝑙𝑎𝑡𝑚𝑎𝑥 + 𝛾, 𝑙𝑛𝑔𝑚𝑎𝑥 + 𝛾)⟩.

Definition 3. (Temporal Domain and Spatial Domain)
Given a set of objects 𝑅, its temporal domain 𝑇𝐷 (𝑅) is the
minimum time range that contains all time ranges of 𝑟 ∈ 𝑅.

Similarly, the spatial domain of 𝑅 is the MBR that contains
all MBRs of 𝑟 ∈ 𝑅, denoted as 𝑆𝐷 (𝑅).

Definition 4. (Expanded Time Range) Given a time range
𝑡𝑟 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ] and a time threshold 𝛿 , the expanded time
range of 𝑡𝑟 is defined as 𝐸𝑇𝑅(𝑡𝑟, 𝛿) = [𝑡𝑚𝑖𝑛 − 𝛿, 𝑡𝑚𝑎𝑥 + 𝛿].
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Fig. 2. Overview of ST-𝑘NN Join Executor.

Definition 5. (ST-𝑘NN) Given an object 𝑟 , a set of objects
𝑆 , an integer 𝑘 , and a time threshold 𝛿 , the ST-𝑘NN (Spatio-
Temporal 𝑘 Nearest Neighbors) of 𝑟 from 𝑆 is defined as 𝑆 ′ =
ST-𝑘NN(𝑟, 𝑘, 𝛿, 𝑆), where |𝑆 ′ | ≤ 𝑘 , and ∀𝑠𝑖 ∈ 𝑆 ′, it satisfies the
following two constraints at the same time:

(1) Temporal Concurrency. The temporal gap between 𝑟 and
𝑠𝑖 is no more than 𝛿 , i.e.,

𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) ∩ 𝑠𝑖 .𝑡𝑟 ≠ ∅ (1)

(2) Spatial Closeness. Suppose 𝑆 ′′ ⊆ 𝑆 is the set of
objects that meet the temporal concurrency constraint. Spatial
closeness requires that ∀𝑠𝑖 ∈ 𝑆 ′, ∀𝑠 𝑗 ∈ 𝑆 ′′\𝑆 ′, 𝑑 (𝑟, 𝑠𝑖 ) < 𝑑 (𝑟, 𝑠 𝑗 ).

Here, |𝑆 ′ | < 𝑘 iff |𝑆 ′′ | < 𝑘 . 𝑑 (𝑟, 𝑠) measures the distance
between 𝑟 and 𝑠, which is defined as:

𝑑 (𝑟, 𝑠) = min
𝑝∈𝑟 .𝑔𝑒𝑜𝑚,𝑞∈𝑠.𝑔𝑒𝑜𝑚

𝑑𝑒𝑢 (𝑝, 𝑞) (2)

where 𝑑𝑒𝑢 (𝑝, 𝑞) is the Euclidean distance between two spatial
points 𝑝 and 𝑞.

Discussion. The temporal gap 𝛿 is defined because in many
real applications such as ride-sharing [8], users would have
a tolerance for some time deviation (e.g., 15 minutes). In
fact, the temporal concurrency with a gap is more general
for various applications. Besides, we do not combine spatio-
temporal dimensions into a single distance metric using a
linear combiner with different weights [34]. Because 1) the
temporal dimension has a rather different scale from spatial
dimension, so we should not put them together simply; and
2) for different applications the weights are different. It is
intractable for end users to assign appropriate weights to
spatio-temporal dimensions, respectively.

Definition 6. (ST-𝑘NN Join) Given two sets of objects 𝑅 and
𝑆 , an integer number 𝑘 , and a time threshold 𝛿 , ST-𝑘NN join
of 𝑅 and 𝑆 (denoted as 𝑅⋉𝑆) combines each object 𝑟 ∈ 𝑅 with
its ST-𝑘NNs from S. Formally,

𝑅 ⋉ 𝑆 = {(𝑟, 𝑠) |∀𝑟 ∈ 𝑅,∀𝑠 ∈ ST-𝑘NN(𝑟, 𝑘, 𝛿, 𝑆)} (3)

We find that those objects outside of the time period
𝐺𝑇 = 𝐸𝑇𝑅(𝑇𝐷 (𝑅), 𝛿) ∩ 𝑇𝐷 (𝑆), i.e., 𝑡𝑟 ∩ 𝐺𝑇 = ∅, would not
contribute to the final results. So before actually performing
ST-𝑘NN join, we first filter out the objects in 𝑅 and 𝑆 outside
of 𝐺𝑇 to avoid unnecessary computations. We call 𝐺𝑇 global
temporal domain, and 𝐺𝑆 = 𝑆𝐷 (𝑆) global spatial domain. In
the following, 𝑅 and 𝑆 represent the filtered set, respectively.

B. Apache Spark

Apache Spark [24] is an in-memory distributed framework
for large-scale data processing. It provides an abstraction
called resilient distributed dataset (RDD) consisting of several
partitions across a cluster of machines. Each RDD is built
using parallelized operations (e.g. map, filter, reduce).
RDDs can be cached in memory or persistent on disk to
accelerate data reusing and support iteration. In Spark, we
can broadcast variables to all partitions in an RDD. Shuffle
is an operation to reorganize data across partitions. Note that
shuffle is very expensive as it moves data among partitions
or even machines, so we should try to avoid it when possible.
In a Spark cluster, there are two types of nodes, i.e., master
node and slave node. In the master node, there is a driver
program to submit Spark jobs or broadcast variables. In a slave
node, there are several executors. Each executor processes
multiple partitions parallelly, whose degree of parallelism is
dependent on the CPU cores assigned to the executor.

III. OVERVIEW

Figure 2 presents the framework of our proposed ST-𝑘NN
Join Executor, which consists of four main steps:

Data Partition for 𝑆 . In this step, as shown in Fig. 2(a),
we divide 𝑆 into several spatio-temporal partitions (i.e., ST-
partitions), where the numbers of objects in different partitions
are almost the same to achieve a good load balance.

First Round Local Join. In this step, as described in
Fig. 2(b), for each ST-partition, we build two local indexes,
i.e., time range count index (TRC-index) and 3D R-tree index
based on 𝑠 ∈ 𝑆 that locates in this ST-partition. Using these
two indexes, for each object 𝑟 ∈ 𝑅 that locates in this partition,
we determine an area, in which the ST-𝑘NNs of 𝑟 must reside.

Second Round Local Join. As shown in Fig. 2(c), we check
all ST-partitions that overlap with the area of 𝑟 calculated in
the previous step. In each satisfied partition, we perform a
𝑘NN search, generating a set of local ST-𝑘NNs of 𝑟 .

Merge Result. As shown in Fig. 2(d), for each object 𝑟 , we
merge multiple local ST-𝑘NN results into a global one, and
produce the final result.

IV. ST-𝑘NN JOIN EXECUTOR

A. Data Partition for 𝑆

In distributed environments for ST-𝑘NN join, it is vital to
design a good data partition strategy, which requires that:
1) Spatio-Temporal Proximity. Objects that are close both
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spatially and temporally should be assigned to the same
partition as many as possible, so we are likely to find all ST-
𝑘NNs in one partition, reducing the network communication
overhead among different partitions. 2) Even Distribution. The
numbers of objects in different partitions are as equal as
possible, therefore we can achieve load balance.

Existing distributed frameworks for spatial data processing
either focus on spatial partitioning merely [2], [3], or aim at
spatial-temporal join [35], [36], which cannot be used for ST-
𝑘NN join directly. To that end, this paper devises a simple but
effective spatio-temporal data partition strategy for ST-𝑘NN
join. We partition 𝑆 with four steps: 1) Sampling, 2) Temporal
Partitioning, 3) Spatial Partitioning, and 4) Reassignment, as
shown in Fig. 2(a).

Sampling. In this step, we take a set of random samples 𝑆 ′

from 𝑆 with a sampling rate of 𝜂. Since 𝑆 ′ is sampled randomly
from 𝑆 , it keeps the spatio-temporal distribution of 𝑆 . Then 𝑆 ′

is collected to the driver program on the master node, where
we would construct spatio-temporal partitions based on the
samples. We take 𝜂 = 1% as Simba [2] did.

Temporal Partitioning. In this step, we divide the global
temporal domain 𝐺𝑇 into at most 𝛼 disjoint time ranges (called
temporal partitions) 𝑇𝑃 = {𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑚}, 𝑚 ≤ 𝛼 , such
that 𝐺𝑇 =

⋃
1≤𝑖≤𝑚

𝑡𝑝𝑖 , and ∀𝑖 ∈ [1,𝑚], ∀𝑗 ∈ [1,𝑚], 𝑖 ≠ 𝑗 ,

𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 = ∅. For any 𝑠 ∈ 𝑆 ′, if its time range 𝑠 .𝑡𝑟 overlaps
with a temporal partition 𝑡𝑝𝑖 , i.e., 𝑠 .𝑡𝑟 ∩ 𝑡𝑝𝑖 ≠ ∅, 𝑠 will be
assigned to 𝑡𝑝𝑖 . As a consequence, an object will be copied
many times if it intersects multiple temporal partitions. Here
𝛼 is a system parameter that has a significant impact on the
performance of ST-𝑘NN join. In this section, we assume that 𝛼
is given, and in Section V, we will deploy knob tuning models
to determine a good value of 𝛼 for each request. The effects
of different values of 𝛼 will be shown in Section VII.

The time span of a temporal partition has a significant
impact on ST-𝑘NN join. On one hand, intuitively, to reduce
the data replication of 𝑆 , the time span of a temporal partition
should not be too small (at least it should not be smaller than
the time span of 𝑠 ∈ 𝑆 ′). Moreover, to avoid the replication
of 𝑟 ∈ 𝑅 during the following join process, the time span
of a temporal partition is expected to be bigger than that of
𝐸𝑇𝑅(𝑟, 𝛿). On the other hand, however, during the join process,
we will leverage temporal partitions to filter out irrelevant
objects. As a result, to ensure a good filtering ability, the time
span of a temporal partition should be as small as possible.

Based on the observations above, the time span of any
temporal partition 𝑡𝑝𝑖 , ∀𝑖 ∈ [1,𝑚], should hold:

|𝑡𝑝𝑖 | ≥ 𝑚𝑎𝑥{|𝑠 .𝑡𝑟 |, 2𝛿 + |𝑟 .𝑡𝑟 |} (4)

where |𝑠 .𝑡𝑟 | and |𝑟 .𝑡𝑟 | are the average time spans of 𝑠 ∈ 𝑆 and
𝑟 ∈ 𝑅, respectively. We adopt 2𝛿 + |𝑟 .𝑡𝑟 | because the expanded
time span of 𝑟 ∈ 𝑅 is expected to be 2𝛿 + |𝑟 .𝑡𝑟 |.

Besides, to achieve load balance, the numbers of objects in
different temporal partitions should be as equal as possible,
which can be achieved by limiting the minimum number of
samples in each temporal partition:

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑡𝑝𝑖 ) ≥ |𝑆 ′ |/𝛼 (5)

where |𝑆 ′ | is the number of objects in 𝑆 ′. |𝑆 ′ |/𝛼 guarantees
the number of temporal partitions is no more than 𝛼 .

We propose a novel temporal partitioning method based on
Sweep Line Algorithm [37], which forms temporal partitions
one by one. As shown in Algorithm 1, we first sort the objects
in 𝑆 ′ by the start time in an ascending order (Line 1), then
initialize the following variables: 𝑡𝑝𝑠 stores the final temporal
partitions, 𝑐𝑢𝑟 is a set of objects in the current temporal
partition, 𝑠𝑡𝑎𝑟𝑡 records the start time of the current temporal
partition, and 𝑠𝑙 is the sweep line (Line 2). 𝑚𝑖𝑛𝑆𝑝𝑎𝑛 and
𝑚𝑖𝑛𝑁𝑢𝑚 are the minimum time span of a temporal partition
and the minimum number of objects in a temporal partition,
respectively (Line 3). In Lines 4-8, we scan 𝑆 ′ from left
to right. Once the current temporal partition satisfies both
Equ. (4) and Equ. (5), it forms a final temporal partition and is
added to 𝑡𝑝𝑠. Those objects 𝑠′ ∈ 𝑐𝑢𝑟 that will not contribute to
the next temporal partition (i.e., 𝑠′ .𝑡𝑟 .𝑡𝑚𝑎𝑥 < 𝑠𝑡𝑎𝑟𝑡) are filtered
out. Finally, we process the last temporal partition and return
the final results (Line 9).

Algorithm 1: TP(𝑆 ′, 𝐺𝑇 , 𝑘 , 𝛿 , 𝛼 , 𝛽, 𝜂)

1 Sort 𝑆 ′ by the start time of objects in ascending order;
2 𝑡𝑝𝑠 = ∅; 𝑐𝑢𝑟 = ∅; 𝑠𝑡𝑎𝑟𝑡 = 𝐺𝑇 .𝑡𝑚𝑖𝑛; 𝑠𝑙 = 𝐺𝑇 .𝑡𝑚𝑖𝑛;
3 𝑚𝑖𝑛𝑆𝑝𝑎𝑛 =𝑚𝑎𝑥{|𝑠 .𝑡𝑟 |, 2𝛿 + |𝑟 .𝑡𝑟 |}; 𝑚𝑖𝑛𝑁𝑢𝑚 = |𝑆 ′ |/𝛼 ;
4 for 𝑠 ∈ 𝑆 ′ do
5 𝑠𝑙 = 𝑠 .𝑡𝑟 .𝑡𝑚𝑖𝑛; 𝑐𝑢𝑟 = 𝑐𝑢𝑟 ∪ {𝑠}; 𝑠𝑝𝑎𝑛 = 𝑠𝑙 − 𝑠𝑡𝑎𝑟𝑡 ;
6 if 𝑠𝑝𝑎𝑛 ≥ 𝑚𝑖𝑛𝑆𝑝𝑎𝑛 and |𝑐𝑢𝑟 | ≥ 𝑚𝑖𝑛𝑁𝑢𝑚 then
7 𝑡𝑝𝑠 = 𝑡𝑝𝑠 ∪ {[𝑠𝑡𝑎𝑟𝑡, 𝑠𝑙]}; 𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑙 ;
8 Filter out 𝑠′ ∈ 𝑐𝑢𝑟 that 𝑠′ .𝑡𝑟 .𝑡𝑚𝑎𝑥 < 𝑠𝑡𝑎𝑟𝑡 ;

9 return 𝑡𝑝𝑠 ∪ {[𝑠𝑡𝑎𝑟𝑡,𝐺𝑇 .𝑡𝑚𝑎𝑥 ]};

Spatial Partitioning. In this step, for each temporal par-
tition 𝑡𝑝𝑖 , we divide the global spatial domain 𝐺𝑆 into at
most 𝛽 spatial partitions 𝑆𝑃𝑖 = {𝑠𝑝𝑖1, 𝑠𝑝

𝑖
2, ..., 𝑠𝑝

𝑖
𝑛}, 𝑛 ≤ 𝛽,

using Quad-tree [38] based on the samples 𝑆 ′𝑖 assigned to
𝑡𝑝𝑖 . As each spatial partition belongs to a temporal partition,
we call each spatial partition an ST-partition. Like 𝛼 , 𝛽

is a system parameter as well, which imposes significant
effects on the performance of ST-𝑘NN join. We will assign an
appropriate value to it based on the parameter models proposed
in Section V. The impact of 𝛽 will be tested in Section VII.

This paper adopts Quad-tree [38] to perform spatial par-
titioning for three reasons. Firstly, Quad-tree can mitigate
the unbalanced problem of spatial distribution compared with
Grid partition [39], [40], as Quad-tree partitions the areas with
denser objects into smaller regions. Secondly, compared with
R-tree [41] and its variants [42], [43], Quad-tree considers
all parts of spatial domain, but R-tree and its variants ignore
those unsampled areas. One optional method is to adjust the
MBRs of nodes in R-tree, but this is time-consuming and may
produce a poor-performance R-tree, especially for non-point
objects (e.g., line strings and polygons). Thirdly, for KD-
tree [44], it is hard to determine a split line for non-point
data, but Quad-tree splits the space more easily.

Quad-tree recursively splits the global spatial domain 𝐺𝑆

into four equal-sized sub-regions. If the MBR of an object
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𝑠 ∈ 𝑆 ′𝑖 intersects multiple sub-regions, it will be copied to
all intersected sub-regions. Each sub-region is further split if
it has more than 𝜁 objects. All leaf sub-regions form a set
𝑆𝑃𝑖 of spatial partitions. Note that we check the MBR of an
object instead of the object itself here, because it is much
faster to check the spatial relation of two MBRs than that of
two complex objects themselves.

However, it is not easy to decide a good 𝜁 . It gets more
complicated if we limit the maximum number 𝛽 of spatial
partitions. In our ST-𝑘NN join problem, each 𝑟 ∈ 𝑅 needs to
find its ST-𝑘NNs. It is efficient if we can find all its ST-𝑘NNs
in one partition. Besides, the numbers of objects in different
spatial partitions should be as the same as possible for load
balance. As a result, 𝜁 is defined as:

𝜁 =𝑚𝑎𝑥{|𝑆 ′𝑖 |/𝛽, 4𝑘 × 𝜂 × |𝑡𝑝𝑖 | ÷ (2𝛿 + |𝑟 .𝑡𝑟 |)} (6)

where |𝑆 ′𝑖 |/𝛽 is the average samples number in a spatial
partition. 4𝑘 ×𝜂 × |𝑡𝑝𝑖 | ÷ (2𝛿 + |𝑟 .𝑡𝑟 |) ensures that after a split,
at least one of its sub-regions is expected to have more than 𝑘

satisfied objects. Here, 𝑘 is multiplied by 𝜂×|𝑡𝑝𝑖 |÷(2𝛿+|𝑟 .𝑡𝑟 |),
aiming to linearly scale to the satisfied object number in 𝑆 ′𝑖 .
Figure 2(a) gives an example of spatial partitioning, where
𝜁 = 3. Note that 𝑟 itself does not intersect with 𝑠𝑝𝑖𝑗 , but it is
copied to 𝑠𝑝𝑖𝑗 because 𝑀𝐵𝑅(𝑟 ) ∩ 𝑠𝑝𝑖𝑗 ≠ ∅.

As shown in Algorithm 2, we resort to a priority queue
𝑝𝑞 to split the Quad-tree nodes. Initially, the global spatial
domain 𝐺𝑆 (i.e., the root of Quad-tree) is inserted into 𝑝𝑞. 𝜁
is initialized in accordance with Equ. (6) (Lines 1-2). Then we
check all nodes in 𝑝𝑞 in a descending order of sample numbers
(Lines 3-7). If the current node has less than 𝜁 samples, the
split process is terminated. Otherwise, we split the node into
four sub-nodes, and add them into 𝑝𝑞. This process is repeated
until the number of spatial partitions is not less than 𝛽. Each
node in 𝑝𝑞 represents a spatial partition (Line 8).

Algorithm 2: SP(𝑆 ′𝑖 , 𝐺𝑆 , 𝑘 , 𝛽, 𝜂)

1 Initialize a priority queue 𝑝𝑞, with keys as the sample
numbers in Quad-tree nodes, sorted in a descending
order; 𝑝𝑞.𝑝𝑢𝑠ℎ(𝐺𝑆);

2 𝜁 =𝑚𝑎𝑥{|𝑆 ′𝑖 |/𝛽, 4𝑘 × 𝜂 × |𝑡𝑝𝑖 | ÷ (2𝛿 + |𝑟 .𝑡𝑟 |)};
3 while 𝑝𝑞.𝑙𝑒𝑛𝑔𝑡ℎ < 𝛽 do
4 𝑛𝑜𝑑𝑒 = 𝑝𝑞.𝑝𝑜𝑝 ();
5 if 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑛𝑜𝑑𝑒) < 𝜁 then
6 𝑝𝑞.𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒); break;

7 Split 𝑛𝑜𝑑𝑒 into 4 sub-nodes, and add them into 𝑝𝑞;

8 return the nodes in 𝑝𝑞 as spatial partitions;

Reassignment. After the previous two steps, we get at most
𝛼 × 𝛽 ST-partitions. Each ST-partition is bound to a time
range and an MBR, with which we build a global index 𝐺𝐼 ,
where the time ranges are organized as a sorted array, and
the MBRs are organized as a Quad-tree. The global index 𝐺𝐼

is broadcast to all partitions of 𝑆 . For each 𝑠 ∈ 𝑆 , if its time
range and geometry both intersect with that of an ST-partition,
the identifier of the ST-partition will be bound to 𝑠. After
that, 𝑆 is re-partitioned according to the bound identifiers. The

objects with the same identifier will be assigned to the same
partition. Note that an object 𝑠 may be assigned to multiple
new partitions, as it may intersect several ST-partitions.

B. First Round Local Join

In this step, for each 𝑟 ∈ 𝑅, we aim to find an area
𝐸𝑀𝐵𝑅(𝑟, 𝛾), such that its ST-𝑘NNs in 𝑆 must intersect with
𝐸𝑀𝐵𝑅(𝑟, 𝛾). It is challenging because of two reasons. First,
for a non-point object 𝑟 ∈ 𝑅 with a time range, it may intersect
with more than one ST-partitions at the same time. Second,
it is hard to figure out whether a partition contains at least 𝑘
objects that meet the temporal concurrency requirement before
scanning it. For the first challenge, we check all intersected
ST-partitions to find the nearest one to 𝑟 . For the second
challenge, we propose a novel index structure called TRC-
index (Time Range Count Index) in each ST-partition to get
the minimum number of intersected time ranges of 𝐸𝑇𝑅(𝑟, 𝛿)
efficiently. Overall, the first round local join contains three
sub-steps: 1) TRC-index Construction, 2) Data Partition for
𝑅, and 3) Distance Bound Calculation.

TRC-index Construction. There are two requirements for
TRC-index. 1) Given a set of objects 𝑆𝑖 and a time range 𝑡𝑟 , it
returns efficiently the minimum number of objects in 𝑆𝑖 whose
time ranges intersect with 𝑡𝑟 . 2) TRC-index should be as small
as possible, because it will be broadcast to all partitions of 𝑅.

To this end, we design a lightweight but effective TRC-
index. The intuition of TRC-index is straightforward: if we
know the upper bound number 𝑁 of time ranges that would
not intersect with 𝑡𝑟 , then we can obtain easily the lower
bound number, i.e., |𝑆𝑖 | − 𝑁 , of intersected time ranges. For
any object 𝑠 ∈ 𝑆𝑖 , its time range does not intersect with
𝑡𝑟 iff 𝑠 .𝑡𝑟 .𝑡𝑚𝑎𝑥 < 𝑡𝑟 .𝑡𝑚𝑖𝑛 or 𝑠 .𝑡𝑟 .𝑡𝑚𝑖𝑛 > 𝑡𝑟 .𝑡𝑚𝑎𝑥 . Therefore,
to accelerate the computation of 𝑁 , TRC-index stores the
number of objects whose maximum time is less than 𝑡𝑟 .𝑡𝑚𝑖𝑛

or minimum time is greater than 𝑡𝑟 .𝑡𝑚𝑎𝑥 .

Algorithm 3: TRCIndex(𝑆𝑖 , 𝑏𝑖𝑛𝑁𝑢𝑚)

1 Initialize two arrays 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 with length of
𝑏𝑖𝑛𝑁𝑢𝑚, and each value is set 0;

2 𝑏𝑖𝑛𝐿𝑒𝑛 = ⌈|𝑇𝐷 (𝑆𝑖 ) |/𝑏𝑖𝑛𝑁𝑢𝑚⌉; 𝑟𝑡 = 𝑇𝐷 (𝑆𝑖 ).𝑡𝑚𝑖𝑛;
3 for 𝑠 ∈ 𝑆𝑖 do
4 𝑗1 = ⌊(𝑠 .𝑡𝑟 .𝑡𝑚𝑖𝑛 − 𝑟𝑡)/𝑏𝑖𝑛𝐿𝑒𝑛⌋; 𝑇𝑚𝑖𝑛 [ 𝑗1] + +;
5 𝑗2 = ⌊(𝑠 .𝑡𝑟 .𝑡𝑚𝑎𝑥 − 𝑟𝑡)/𝑏𝑖𝑛𝐿𝑒𝑛⌋; 𝑇𝑚𝑎𝑥 [ 𝑗2] + +;

6 for 𝑗 = 1; 𝑗 < 𝑏𝑖𝑛𝑁𝑢𝑚; 𝑗 + + do
7 𝑇𝑚𝑖𝑛 [𝑏𝑖𝑛𝑁𝑢𝑚 − 𝑗 − 1] += 𝑇𝑚𝑖𝑛 [𝑏𝑖𝑛𝑁𝑢𝑚 − 𝑗];
8 𝑇𝑚𝑎𝑥 [ 𝑗] += 𝑇𝑚𝑎𝑥 [ 𝑗 − 1];
9 return ⟨𝑇𝐷 (𝑆𝑖 ), |𝑆𝑖 |, 𝑏𝑖𝑛𝑁𝑢𝑚,𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 ⟩;

As the time dimension is continuous, we use discrete dis-
joint bins with equal length to represent the time information
approximately. Algorithm 3 presents the pseudo-code of TRC-
index construction. We use two arrays 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 to record
the number of time ranges whose start time and end time
locate in each bin, respectively (Line 1). Then we calculate the
length of each bin, and set a reference time as the minimum
time of 𝑆𝑖 ’s temporal domain for calculating the bin number
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Fig. 3. Illustration of TRC-Index.

(Line 2). The objects 𝑆𝑖 in the ST-partition are scanned linearly.
For each object 𝑠 ∈ 𝑆𝑖 , we first calculate its start and end
time bin numbers, respectively, then increase their counts by 1
(Lines 3-5). After that, we accumulate the counts by scanning
𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 for once (Lines 6-8). Note that we accumulate
the counts of 𝑇𝑚𝑖𝑛 from right to left, but 𝑇𝑚𝑎𝑥 from left
to right. By doing this, we can get quickly the number of
objects whose start time is greater than 𝑡𝑟 .𝑡𝑚𝑎𝑥 using 𝑇𝑚𝑖𝑛 ,
and the number of objects whose end time is less than 𝑡𝑟 .𝑡𝑚𝑖𝑛

using 𝑇𝑚𝑎𝑥 . Finally, the TRC-index is returned as a quintuple
⟨𝑇𝐷 (𝑆𝑖 ), |𝑆𝑖 |, 𝑏𝑖𝑛𝑁𝑢𝑚,𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 ⟩ (Line 9).

With the help of TRC-index, we can calculate quickly the
lower bound number of objects whose time ranges intersect
with 𝑡𝑟 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ]. We first compute the bin IDs, i.e., 𝑏𝑚𝑖𝑛

and 𝑏𝑚𝑎𝑥 , of 𝑡𝑟 .𝑡𝑚𝑖𝑛 and 𝑡𝑟 .𝑡𝑚𝑎𝑥 , respectively, using the similar
method in Lines 3-5 of Algorithm 3. The number of objects
whose end time is smaller than 𝑡𝑟 .𝑡𝑚𝑖𝑛 is at most 𝑇𝑚𝑎𝑥 [𝑏𝑚𝑖𝑛]
(note that in the bin 𝑏𝑚𝑖𝑛 , there exist some objects whose end
time is not smaller than 𝑡𝑟 .𝑡𝑚𝑖𝑛 , as we use discrete bins to ap-
proximate continuous times). Similarly, the number of objects
whose start time is greater than 𝑡𝑟 .𝑡𝑚𝑎𝑥 is at most 𝑇𝑚𝑖𝑛 [𝑏𝑚𝑎𝑥 ].
As a result, the number of objects whose time ranges intersect
with 𝑡𝑟 is at least |𝑆𝑖 | −𝑇𝑚𝑎𝑥 [𝑏𝑚𝑖𝑛] −𝑇𝑚𝑖𝑛 [𝑏𝑚𝑎𝑥 ].

The total bin number 𝑏𝑖𝑛𝑁𝑢𝑚 provides a trade-off between
network overhead and result precision. A bigger 𝑏𝑖𝑛𝑁𝑢𝑚

means a higher lower bound, but requires more network data
transmission. A knob tuning model is deployed to decide
𝑏𝑖𝑛𝑁𝑢𝑚 for every ST-𝑘NN join in Section V. We will in-
vestigate its effect on ST-𝑘NN join in Section VII.

For example, given a time range database shown in Fig. 3(a),
we count the objects in each bin in Fig. 3(b) (here 𝑏𝑖𝑛𝑁𝑢𝑚 =

4), and accumulate the counts in Fig. 3(c). With TRC-index,
we find that there are at least 2 time ranges intersecting with
“[2, 4]” (i.e., “[1, 8]” and “[3, 6]”), as shown in Fig. 3(d).

Data Partition for 𝑅. In the previous step, we build a
TRC-index in each ST-partition. Recall that in Section IV-A,
we built a global index 𝐺𝐼 . In this step, we broadcast 𝐺𝐼

and all TRC-indexes to the partitions of 𝑅. Because 𝐺𝐼 and
TRC-indexes are small enough, the broadcast overhead can be
ignored. For each 𝑟 ∈ 𝑅, we find a set of temporal partitions
𝑇𝑃 ′ = {𝑡𝑝′1, 𝑡𝑝

′
2, ..., 𝑡𝑝

′
𝑢} that intersects with 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) using

𝐺𝐼 . In each 𝑡𝑝′𝑖 ∈ 𝑇𝑃 ′, we find 𝑟 ’s nearest spatial partition 𝑠𝑝′𝑖

that has at least 𝑘 satisfied objects (i.e., whose time ranges
intersect with 𝐸𝑇𝑃 (𝑟 .𝑡𝑟, 𝛿)) in 𝑆 using 𝐺𝐼 and TRC-index. In
the end, we get 𝑢 spatial partitions {𝑠𝑝′1, 𝑠𝑝′2, ..., 𝑠𝑝′𝑢}, among
which we select the nearest one and assign its identifier to 𝑟 .
Finally, 𝑅 is re-partitioned according to the bound identifiers,

where the objects 𝑟 ∈ 𝑅 with the same identifier are shuffled to
the same ST-partition. Note that for each 𝑟 ∈ 𝑅, it is assigned
to at most ONE ST-partition in this step. If 𝑢 = 0, i.e., 𝑟 cannot
find any satisfied ST-partition with TRC-index, we do not re-
partition it and let it skip the first round local join directly.

It is efficient to find 𝑟 ’s nearest spatial partition that has at
least 𝑘 satisfied objects in 𝑆 with the help of 𝐺𝐼 and TRC-
index. Note that the spatial partitions 𝑆𝑃 ′

𝑖 = {𝑠𝑝′𝑖1 , 𝑠𝑝
′𝑖
2 , ..., 𝑠𝑝

′𝑖
𝑛 }

in a temporal partition 𝑡𝑝′𝑖 ∈ 𝑇𝑃 ′ are organized as a Quad-
tree in 𝐺𝐼 ; thus, we can easily check each spatial partition
in 𝑆𝑃 ′

𝑖 from near to far iteratively. For each 𝑠𝑝′𝑖𝑗 , we get the
minimum number of objects whose time ranges intersect with
𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) using TRC-index. If the number is not less than
𝑘 , the check process is terminated, and 𝑠𝑝′𝑖𝑗 is returned.

Distance Bound Calculation. Assigning 𝑟 to an ST-
partition having at least 𝑘 satisfied objects in 𝑆 guarantees
that, we can calculate a distance bound 𝛾 in this ST-partition,
such that the distance between 𝑟 and any ST-𝑘NN is less
than 𝛾 . Suppose 𝑅𝑖 and 𝑆𝑖 are the objects assigned to the ST-
partition 𝑠𝑝𝑖 in 𝑅 and 𝑆 , respectively. In each ST-partition 𝑠𝑝𝑖 ,
we first build a 3D R-tree index [45] on 𝑆𝑖 , where the temporal
information is regarded as the 3rd dimension. For each 𝑟 ∈ 𝑅𝑖 ,
we perform a local ST-𝑘NN search in this partition using the
built 3D R-tree index, generating a local result {𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑘
}

ordered by their distances to 𝑟 . Thus, 𝛾 = 𝑑 (𝑟, 𝑠𝑖
𝑘
). For those

objects that cannot find a satisfied ST-partition in the previous
step (i.e., Data Partition for 𝑅), we set 𝛾 = ∞. Note that the
local join results and 3D R-tree index of 𝑆𝑖 are cached to avoid
redundant computations in the second round local join.

C. Second Round Local Join

In this step, for each 𝑟 ∈ 𝑅, we check all possible ST-
partitions that may produce its ST-𝑘NNs, and get local results.

Recall that after performing the first round local join, we
get a distance bound 𝛾 for each 𝑟 ∈ 𝑅. All ST-partitions
that both temporally intersect with 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) and spatially
intersect with 𝐸𝑀𝐵𝑅(𝑟, 𝛾) are candidates. These candidates can
be figured out efficiently using the global index 𝐺𝐼 . For each
candidate ST-partition of 𝑟 (except for the one we assigned
to 𝑟 in the first round local join, which must be a candidate
ST-partition of 𝑟 but we can omit it here to avoid repeated
computations), we bound its identifier to 𝑟 . After that, we
re-partition 𝑅 according to the bound identifiers, where the
objects in 𝑅 with the same identifier are shuffled to the same
ST-partition. Note that an object 𝑟 ∈ 𝑅 will be copied several
times because there may be multiple candidate ST-partitions
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of 𝑟 . Finally, in each new ST-partition 𝑠𝑝𝑖 , we perform an
ST-𝑘NN search for every 𝑟 ∈ 𝑅𝑖 by leveraging the 3D R-tree
index over 𝑆𝑖 built in the first round local join. Different from
the first round local join, the search process can be optimized
further using the distance bound 𝛾 , i.e., if the distance between
𝑟 and a 3D R-tree node is greater than 𝛾 , the ST-𝑘NN search
can be terminated immediately.

This step shuffles small parts of 𝑅 only, because the
𝐸𝑀𝐵𝑅(𝑟, 𝛾) of most objects 𝑟 ∈ 𝑅 intersect with only one
ST-partition. These objects can find their ST-𝑘NNs in the first
round join, thus do not participate in the second round join.

D. Merge Result

After two-round local joins, we obtain an individual local
𝑘NN result of 𝑟 in its every ST-partition (note that we also
consider the local results produced in the first round local join
here). A straightforward method performs four steps: 1) shuffle
local results, where the results of the same 𝑟 are re-partitioned
to the same new partition; 2) combine them into a global
result of 𝑟 using multiway merge algorithm [46]; 3) remove
duplicates, because an object could be assigned to multiple ST-
partitions, so there may be duplicated combinations of (𝑟, 𝑠)
in different local results; 4) take the first 𝑘 combinations as
the final ST-𝑘NN result of 𝑟 .

To reduce the network transmission overhead further, this
paper removes duplicates before shuffling local results. For
example, as shown in Fig. 4, suppose the combination (𝑟, 𝑠)
emerges in the local results of ST-partition 0, 1 and 2 at
the same time. The start time of 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) ∩ 𝑠 .𝑡𝑟 is called
temporal reference point (TRP, e.g., the red point in Fig. 4),
and the lower-left corner of 𝐸𝑀𝐵𝑅(𝑟,𝛾) ∩ 𝑀𝐵𝑅(𝑟 ) is called
spatial reference point (SRP, e.g., the blue points in Fig. 4).
We only retain (𝑟, 𝑠) in the ST-partition 0 that contains both
the TRP and SRP, and discard them from the local results in
other two ST-partitions.

Lemma 1. The proposed duplicate removal method is correct.

Proof. We prove it from two aspects: integrity and uniqueness.
Integrity: If 𝑠 is among the ST-𝑘NNs of 𝑟 , (𝑟, 𝑠) will

be generated in the ST-partition in which TRP and SRP
locate. According to the definitions of TRP and SRP, we
have TRP ∈ 𝑠 .𝑡𝑟 , TRP ∈ 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿), SRP ∈ 𝑀𝐵𝑅(𝑠),
and SRP ∈ 𝐸𝑀𝐵𝑅(𝑟,𝛾). 𝑠 will be re-partitioned to all ST-
partitions that temporally intersect with 𝑠 .𝑡𝑟 and spatially
intersect with 𝑀𝐵𝑅(𝑠), and 𝑟 will be re-partitioned to all
ST-partitions that temporally intersect with 𝐸𝑇𝑅(𝑟 .𝑡𝑟, 𝛿) and
spatially intersect with 𝐸𝑀𝐵𝑅(𝑟,𝛾). As a result, 𝑟 and 𝑠 will

ST-kNN 
Join 

Executor

Surrogate 
Model

Acquisition 
Function
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Fig. 5. Traditional Bayesian Optimization.

emerge simultaneously in the ST-partition 𝑠𝑝𝑖𝑗 that the TRP
and SRP locate in, therefore (𝑟, 𝑠) must be produced in 𝑠𝑝𝑖𝑗 if
𝑠 is among the ST-𝑘NNs of 𝑟 .

Uniqueness: only one ST-partition contains TRP and SRP
simultaneously. According to the partitioning strategy, we have
𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 = ∅ if 𝑖 ≠ 𝑗 , and 𝑠𝑝𝑖𝑚 ∩ 𝑠𝑝𝑖𝑛 = ∅ if 𝑚 ≠ 𝑛. Suppose
there exist two different ST-partitions 𝑠𝑝𝑖𝑚 and 𝑠𝑝

𝑗
𝑛 containing

TRP and SRP simultaneously, i.e. TRP ∈ 𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 and SRP
∈ 𝑠𝑝𝑖𝑚 ∩ 𝑠𝑝

𝑗
𝑛 . If 𝑖 ≠ 𝑗 , TRP ∈ 𝑡𝑝𝑖 ∩ 𝑡𝑝 𝑗 , which contradicts

with the temporal partitioning strategy (i.e., no two temporal
partitions intersect with each other). If 𝑖 = 𝑗 and 𝑚 ≠ 𝑛, SRP
∈ 𝑠𝑝𝑖𝑚 ∩ 𝑠𝑝𝑖𝑛 , which is contradictory to the spatial partitioning
strategy (i.e., no two spatial partitions in one temporal partition
intersect with each other). □

V. AUTOMATIC KNOB TUNING

We introduce three system parameters (i.e., 𝛼 , 𝛽 and
𝑏𝑖𝑛𝑁𝑢𝑚) that will impose great effects on the efficiency of
ST-𝑘NN join (see Section VII). It is intractable to fine-tune
them manually for every request. To this end, we propose
an automatic knob tuning framework based on Bayesian
optimization to determine appropriate values for the introduced
system parameters. In what follows of this section, we start by
discussing the knob tuning problem and traditional Bayesian
optimization, and then elaborate on the main components of
the proposed automatic knob tuning framework.

A. Knob Tuning Based on Traditional Bayesian Optimization

Knob tuning [47] is to identify well-performing config-
uration settings within a prescribed dataset and under the
limitation of system resources. Formally, knob tuning can be
defined as an optimization problem:

®𝑥∗ = arg min
®𝑥∈𝛀

𝑓 ( ®𝑥) (7)

where ®𝑥 is a vector of knobs, 𝛀 is the search space, and the
value of 𝑓 ( ®𝑥) is the optimization target under the fixed input
data and system resources. In our ST-𝑘NN join problem, ®𝑥 =

(𝛼, 𝛽, 𝑏𝑖𝑛𝑁𝑢𝑚) and 𝑓 ( ®𝑥) is the execution time of a request.
Note that it is not straightforward to build a function mapping
a given ®𝑥 to the execution time unless we actually perform the
ST-𝑘NN join operation.

Bayesian optimization [48], [49] is widely-used in automatic
database knob tuning when the gradients of 𝑓 ( ®𝑥) are unknown.
It is particularly suitable for the scenarios where the knob
number is small (e.g., 5-20 knobs). Another advantage of
Bayesian optimization, compared with Deep Learning-based
methods [48], [50], [51], is that it requires fewer samples to
achieve high-quality knob settings. Figure 5 exhibits the main
steps of knob tuning with traditional Bayesian optimization,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Feature 
ExtractorRg

Sg

Surrogate Model

Acquisition 
Function

ST-kNN Join 
Executor

Set δi, ki, 
αi, βi,

 
binNumi 

XRi, XSi Observation Set

ti

O
ff

lin
e 

Pr
oc

es
si

ng

Rj Sj

Bayesian Optimizer
Next αj, βj, 
binNumj

O
nl

in
e 

Pr
oc

es
si

ng
Ri

Si

Sam
ple

δj, kj 

〈XRi, XSi, αi, 
βi, δi, ki, 

binNumi, ti〉

User Input

Feature 
Extractor

ST-kNN Join Executor

Execution 
Time Predictor

tj

XRj, XSj

α*, β*, binNum*

Offline Training Knob Tuning Online Execution

Fig. 6. Proposed Framework of Automatic Knob Tuning.

which is a sequential iterative process. Suppose there is a
set of observations (i.e., training samples), where each ob-
servation ⟨𝑋𝑅𝑖 , 𝑋𝑆𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝛿𝑖 , 𝑘𝑖 , 𝑏𝑖𝑛𝑁𝑢𝑚𝑖 , 𝑡𝑖⟩ represents that the
execution time of an ST-𝑘NN join request on two datasets 𝑅𝑖
and 𝑆𝑖 with the query parameters (𝛿𝑖 , 𝑘𝑖 ) and knob settings
(𝛼𝑖 , 𝛽𝑖 , 𝑏𝑖𝑛𝑁𝑢𝑚𝑖 ) is 𝑡𝑖 . 𝑋𝑅𝑖 and 𝑋𝑆𝑖 are the features (see next
sub-section) of 𝑅𝑖 and 𝑆𝑖 , respectively. Bayesian Optimizer
consists of two key components: surrogate model and ac-
quisition function. First, the surrogate model approximates
the function 𝑓 ( ®𝑥) and sequentially updates itself with new
observations. Second, the acquisition function decides where
to sample a new parameter setting, i.e., (𝛼𝑖+1, 𝛽𝑖+1, 𝑏𝑖𝑛𝑁𝑢𝑚𝑖+1).
Third, the new parameter setting is adopted by the ST-𝑘NN
join executor on the same datasets and query parameters with
the previous iteration ( i.e., 𝑅𝑖+1 = 𝑅𝑖 , 𝑆𝑖+1 = 𝑅𝑖+1, 𝛿𝑖+1 = 𝛿𝑖
and 𝑘𝑖+1 = 𝑘𝑖 ), obtaining the execution time 𝑡𝑖+1 and forming
a new observation. Fourth, the new observation is added into
the observation set. The four steps repeat until the maximum
number 𝑁𝐵𝑂 of iterations is reached. Finally, the settings
corresponding to the minimum execution time are returned.

B. Proposed Framework of Automatic Knob Tuning

The steps shown in Fig. 5 are performed during the online
query processing. Since it is relatively time-consuming for ST-
𝑘NN join, if we execute an ST-𝑘NN join in every iteration, the
inference time would be intolerable. To this end, we replace
the ST-𝑘NN join executor in Fig. 5 with a learning-based
model, which predicts the execution time instead of actually
performing ST-𝑘NN join operations. Ultimately, our proposed
framework of automatic knob tuning is shown as Fig. 6, which
consists of two main phases (i.e., Offline Processing and On-
line Processing) with three data streams (i.e., Offline Training,
Knob Tuning and Online Execution). In Offline Processing
phase, we collect a set of observations, with which we train
an Execution Time Predictor. In Online Processing phase, after
a user invoke a request, we first detect an appropriate knob
setting (𝛼∗, 𝛽∗, 𝑏𝑖𝑛𝑁𝑢𝑚∗) based on Bayesian optimization, and
then perform an ST-𝑘NN join with the learned setting.

C. Offline Processing

As shown in the upper part of Fig. 6, we first sample two
sub-datasets 𝑅𝑖 and 𝑆𝑖 from the global datasets. 𝑅𝑖 and 𝑆𝑖 are

ASD ITD C

1 1 1

Spatial Distribution Temporal Distribution

hs ht

Fig. 7. Features with Dimensions.

fed into two modules: 1) Feature Extractor that extracts
features 𝑋𝑅𝑖 and 𝑆𝑆𝑖 of 𝑅𝑖 and 𝑆𝑖 , and 2) ST-𝑘NN Join
Executor that performs ST-𝑘NN Join operation on 𝑅𝑖 and
𝑆𝑖 with specified parameters (𝛿𝑖 , 𝑘𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝑏𝑖𝑛𝑁𝑢𝑚𝑖 ), observing
the execution time 𝑡𝑖 . The previous steps are repeated until we
get enough observations, with which we train an Execution
Time Predictor. The aforementioned process would be repeti-
tively performed whenever the system resources are idle; thus,
Execution Time Predictor could be periodically updated.

Sample. To diversify the features within the data samples,
we employ specific rules and criteria for the sampling process.
For example, we sample sub-datasets of varying cardinalities,
such as 50,000, 100,000, 150,000, and so on. Furthermore,
within each scale of sampling, we further subdivide the process
with different temporal and spatial coverages. This approach
is to ensure that the knowledge accumulated during Offline
Processing can effectively accommodate the diverse ranges of
data inputs from users.

Feature Extractor. Feature extraction is to reduce the
dimensionality and minimize the computational time on the
relevant feature sets. We select features including the area 𝐴𝑆𝐷

of spatial domain 𝑆𝐷 , the interval 𝐼𝑇𝐷 of temporal domain
𝑇𝐷 , cardinality 𝐶, and spatio-temporal distribution of 𝑅𝑖 (or
𝑆𝑖 ). To represent its spatial distribution, we partition 𝑆𝐷 into
equal-sized and disjoint 𝑎 ×𝑏 regions (in our implementation,
𝑎 = 10 and 𝑏 = 10), and record the numbers of objects over-
lapped with each region. In this manner, we obtain an (𝑎×𝑏)-
dimensional spatial distribution vector. We do not perform nor-
malization here since the spatial partitioning process is directly
related to the number of objects, rather than the relative value.
To reduce the subsequent computational overhead and alleviate
the sparsity issue of features, we employ Principal Component
Analysis (PCA) [52] to map the high-dimensional features
to ℎ𝑠 dimensions. Similarly, we extract temporal distribution
features with ℎ𝑡 dimensions. Ultimately, we obtain a vector of
features with ℎ = (3 +ℎ𝑠 +ℎ𝑡 ) dimensions, as shown in Fig. 7
(in our implementation, ℎ𝑠 = 25 and ℎ𝑡 = 30).

ST-𝑘NN Join Executor. ST-𝑘NN Join Executor receives
𝑅𝑖 and 𝑆𝑖 along with specified parameters and executes the
ST-𝑘NN join, observing the execution time 𝑡𝑖 .

Execution Time Predictor. Traditional Bayesian Optimizer
necessitates the evaluation of a set of parameters through ac-
tual execution, which could be time-consuming. Therefore, we
devise the Execution Time Predictor to predict the execution
time and provide feedbacks to the Bayesian Optimizer, which
can significantly save time. During Offline Processing, we
obtain a set of observations to train a regression model. We opt
for the XGBoost regression model [53] due to its efficiency
in handling large-scale data and its excellent performance
in preventing overfitting. In our system, the Execution Time
Predictor will be periodically updated on the dynamic observa-
tion set. Additionally, our focus lies in forecasting execution
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time rather than directly predicting parameter values, which
allows us to include essential parameter values themselves
as input, thereby enhancing accuracy. Meanwhile, due to the
minimal time overhead associated with model predictions and
the search strategy, the time cost incurred is also minimal.

D. Online Processing

As shown in the lower part of Fig. 6, when a user issues
an ST-𝑘NN join request, we first search for an appropriate
knob setting using Bayesian Optimizer (denoted as Knob
Tuning stream in dashed red), and then actually perform an
ST-𝑘NN join operation with the learned knob setting (denoted
as Online Execution stream in dotted blue).

Knob Tuning. When a user issues an ST-𝑘NN join request,
the input data 𝑅 𝑗 and 𝑆 𝑗 are sent to the Feature Extractor
(same with the one described in Offline Processing), getting
two feature vectors 𝑋𝑅 𝑗

and 𝑋𝑆 𝑗
. Simultaneously, the Bayesian

Optimizer initializes a Surrogate Model to fit the data from the
Observation Set, and then employs the Acquisition Function to
determine the next search point (𝛼 𝑗 , 𝛽 𝑗 , 𝑏𝑖𝑛𝑁𝑢𝑚 𝑗 ). After that,
the new search point (𝛼 𝑗 , 𝛽 𝑗 , 𝑏𝑖𝑛𝑁𝑢𝑚 𝑗 ), features 𝑋𝑅 𝑗

and 𝑋𝑆 𝑗
,

and query parameters 𝛿 𝑗 and 𝑘 𝑗 are fed into the Execution Time
Predictor, predicting the execution time 𝑡 𝑗 and forming a new
observation. The previous steps are repeated 𝑁𝐵𝑂 times, and
the setting (𝛼∗

𝑗 , 𝛽
∗
𝑗 , 𝑏𝑖𝑛𝑁𝑢𝑚

∗
𝑗 ) corresponding to the minimum

execution time is returned.
(1) Surrogate Model. Since prior knowledge will be up-

dated with new observations, we employ Gaussian Processes
(GP) [54], [55] to construct the Surrogate Model, because GP
can obtain the distribution of the implicit function based on
the updated prior knowledge, resulting in a better fit to the
data points. A GP builds a function distribution 𝑓𝑙 based on 𝑙

data points 𝐷1:𝑙 = {( ®𝑥𝑖 , 𝑡𝑖 )}, 𝑖 = 1, . . . , 𝑙 , where 𝑡𝑖 = 𝑓𝑙 ( ®𝑥𝑖 ) + 𝜖𝑖
with 𝜖𝑖 ∼ N(0, 𝜎2

𝑛𝑜𝑖𝑠𝑒 ) as the noisy observation of the objective
function at ®𝑥𝑖 . Let ®𝑡1:𝑙 = [𝑡1 𝑡2 ... 𝑡𝑙 ]. Since 𝑓𝑙 follows a joint
Gaussian distribution, when a new data point ( ®𝑥𝑙+1, 𝑡𝑙+1) is
observed, conditional on the previous observed data 𝐷1:𝑙 , we
can subsequently derive the predictive distribution of 𝑓𝑙+1:

𝑃 (𝑓𝑙+1 |𝐷1:𝑙 , ®𝑥𝑙+1) ∼ N (𝜇𝑙 ( ®𝑥𝑙+1), 𝜎2
𝑙
( ®𝑥𝑙+1) + 𝜎2

𝑛𝑜𝑖𝑠𝑒 ) (8)

where
𝜇𝑙 ( ®𝑥𝑙+1) = ®𝑘𝑇 [𝑲 + 𝜎2

𝑛𝑜𝑖𝑠𝑒 𝑰 ]−1®𝑡1:𝑙 (9)

𝜎2
𝑙
( ®𝑥𝑙+1) = 𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥𝑡+1, ®𝑥𝑡+1) − ®𝑘𝑇 [𝑲 + 𝜎2

𝑛𝑜𝑖𝑠𝑒 𝑰 ]−1®𝑘 (10)

®𝑘 = [𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥𝑡+1, ®𝑥1) ... 𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥𝑡+1, ®𝑥𝑙 )] (11)

𝑲 =


𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥1, ®𝑥1) · · · 𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥1, ®𝑥𝑙 )

...
. . .

...

𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥𝑙 , ®𝑥1) · · · 𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥𝑙 , ®𝑥𝑙 )

 (12)

Here, 𝑘𝑒𝑟𝑛𝑒𝑙 ( ®𝑥𝑖 , ®𝑥 𝑗 ) is the kernel function that returns the
covariance matrix of two vectors. We adopt the popular Matérn
covariance function [55] as the kernel because of its flexibility.

(2) Acquisition Function. We employ Expected Improve-
ment (EI) strategy [55] to help determining the next search
point, because compared with Probability of Improvement (PI)
strategy [55], EI strategy considers both the probability of
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improvement and the magnitude of the improvement a point
can potentially yield. In our problem, the improvement refers
to the execution time reduced. Suppose 𝑓𝑙 is built based on
𝐷1:𝑙 = {( ®𝑥𝑖 , 𝑡𝑖 )}, and ®𝑥∗ = arg min®𝑥𝑖 ∈𝐷1:𝑙 𝑓𝑙 ( ®𝑥𝑖 ). EI strategy
aims to find ®𝑥𝑙+1 that maximizes the following equation:

𝐸𝐼 ( ®𝑥𝑙+1 ) =
{

(𝑓𝑙 ( ®𝑥∗ ) − 𝜇𝑙 ( ®𝑥𝑙+1 ) )Φ(𝑍 ) + 𝜎𝑙 ( ®𝑥𝑙+1 )𝜙 (𝑍 ), if 𝜎𝑙 ( ®𝑥𝑙+1 ) > 0
0, if 𝜎𝑙 ( ®𝑥𝑙+1 ) = 0

(13)
where 𝑍 = (𝑓𝑙 ( ®𝑥∗) − 𝜇𝑙 ( ®𝑥𝑙+1))/𝜎𝑙 ( ®𝑥𝑙+1), 𝜙 (·) and Φ(·) denote
the PDF (probability density function) and CDF (cumulative
distribution function) of the standard normal distribution re-
spectively, and 𝜇𝑙 ( ®𝑥𝑙+1) and 𝜎𝑙 ( ®𝑥𝑙+1) can be calculated by
Equ. (9) and Equ. (10) respectively.

Online Execution. After finishing the Knob Tuning process,
we obtain an optimized setting (𝛼∗, 𝛽∗, 𝑏𝑖𝑛𝑁𝑢𝑚∗), which is
passed into ST-𝑘NN Join Executor along with the user’s input.
The executor is responsible to finish the join operation. The
execution would be recorded as a new observation for updating
the predictive model and future Bayesian optimization.

VI. PERFORMANCE ANALYSIS

We first discuss the computation complexity of ST-𝑘NN Join
Executor, and then analyze the performance of knob tuning.

A. Complexity Analysis of ST-𝑘NN Join Executor

One of the most expensive overhead in a distributed envi-
ronment is the data transmission among different machines,
which is triggered when we broadcast data and shuffle RDD.
Recall that during ST-𝑘NN join, we broadcast the global index
𝐺𝐼 and TRC-indexes for once, but we can ignore the broadcast
overhead because both 𝐺𝐼 and TRC-indexes are relatively very
small. Figure 8 shows the data shuffle in different steps, where
𝑆 is shuffled for only once, 𝑅 is shuffled for twice, and the
local join results are shuffled for once. Because most 𝑟 ∈ 𝑅 can
find its ST-𝑘NNs in the first round local join (see Section VII),
only few objects in 𝑅 take part in the second round shuffle.
We also remove duplicates before shuffling local join results,
which reduces data transmission overhead further.

As for computation complexity, we build a global index
𝐺𝐼 (consisting of a sorted array for temporal partitions and
multiple Quad-trees for spatial partitions) based on the sample
data 𝑆 ′, which takes O(|𝑆 ′ |×𝑙𝑜𝑔 |𝑆 ′ | +𝛽×|𝑆 ′ | +𝛼×𝛽×𝑙𝑜𝑔𝛽). We
build two local indexes (i.e., TRC-index and Quad-tree over 𝑆𝑖 )
in each ST-partition, which takes O(|𝑆𝑖 | + |𝑆𝑖 | × 𝑙𝑜𝑔|𝑆𝑖 |). Using
global and local indexes, it takes O((|𝑆 | +2×|𝑅 |)×𝑙𝑜𝑔𝛼×𝑙𝑜𝑔𝛽)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

to find the ST-partitions of 𝑅 and 𝑆 . In each ST-partition, we
take O((|𝑅𝑖 | + |𝑆𝑖 |) × 𝑙𝑜𝑔|𝑆𝑖 |) to perform two rounds local join.
Finally, it takes O(|𝑅 | × 𝑘 × 𝑙𝑜𝑔𝑣) to merge the results, where
𝑣 is the average number of ST-partitions an 𝑟 locates in. More
details are given bellow.

Data Partition for 𝑆 . Recall that this step can be divided
into four sub-steps: 1) Sampling, 2) Temporal Partitioning,
3) Spatial Partitioning, and 4) Reassignment.

The cost of Sampling can be ignored, as the number of
samples is rather small and there is no other computation cost.

For Temporal Partitioning (i.e., Algorithm 1), it first sorts
the samples in 𝑆 ′, then scans them only once. Therefore, the
overall computation complexity is O(|𝑆 ′ | × 𝑙𝑜𝑔 |𝑆 ′ |).

The most time-consuming part of Algorithm 2 is the While
loop. As in each iteration, we add 3 more spatial partitions,
thus there is at most 𝛽/3 iterations. In each iteration, we need
to scan at most |𝑆 ′𝑖 | samples, and each new sub-node takes at
most 𝑙𝑜𝑔𝛽 to be inserted into 𝑝𝑞. As a result, the computation
complexity of Algorithm 2 is O(𝛽/3×(|𝑆 ′𝑖 |+4×𝑙𝑜𝑔𝛽)). Because
𝑆 ′ = 𝑆 ′1 ∪ 𝑆 ′2 ∪ ... ∪ 𝑆 ′𝑛 , 𝑛 ≤ 𝛼 , the overall computation cost of
spatial partitioning is O(𝛽/3 × |𝑆 ′ | + 4/3 × 𝛼 × 𝛽 × 𝑙𝑜𝑔𝛽).

For Reassignment, it incurs a shuffle of 𝑆 , thus it can be a
bottleneck of ST-𝑘NN join. As the size of global index 𝐺𝐼 is
very small, the overhead of broadcast can be ignored. Using
the global index 𝐺𝐼 , each 𝑠 ∈ 𝑆 can find the targeted partitions
in O(𝑙𝑜𝑔𝛼 × 𝑙𝑜𝑔𝛽). Therefore, the time complexity of this step
is O(|𝑆 | × 𝑙𝑜𝑔𝛼 × 𝑙𝑜𝑔𝛽).

First Round Local Join. Note that this step consists of
three sub-steps: 1) TRC-index Construction, 2) Data Partition
for 𝑅, and 3) Distance Bound Calculation.

TRC-index Construction method (i.e., Algorithm 3) scans
linearly objects of 𝑆𝑖 and the two arrays (𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 )
for once. As 𝑏𝑖𝑛𝑁𝑢𝑚 is relatively much smaller than 𝑆𝑖 , the
overall computation for all ST-partitions is O(|𝑆 |). The search
complexity using TRC-index is O(1).

For each 𝑟 ∈ 𝑅, we find 𝑢 satisfied temporal partitions in
O(𝑙𝑜𝑔𝛼). For each satisfied temporal partition, we find the
target ST-partition in O(𝑙𝑜𝑔𝛽). Consequently, the overall com-
putation complexity of this sub-step is O(|𝑅 |×𝑙𝑜𝑔𝛼×𝑢×𝑙𝑜𝑔𝛽).
This step triggers a shuffle of 𝑅, thus it could be a bottleneck.

For Distance Bound Calculation, building a local R-tree
index takes O(|𝑆𝑖 | × 𝑙𝑜𝑔 |𝑆𝑖 |). The time complexity of finding
the ST-𝑘NNs of 𝑅𝑖 using R-tree is highly dependent on the data
distribution. In most cases, it can be done in O(|𝑅𝑖 | × 𝑙𝑜𝑔|𝑆𝑖 |).

Second Round Local Join. There is only a small number
of objects 𝑟 ∈ 𝑅 that participate in the second round local join,
taking the same time with that in the first round local join.

Merge Result. This step incurs a shuffle of local results.
Suppose each 𝑟 ∈ 𝑅 is bound to 𝑣 ST-partitions, thus the
multiway merge algorithm takes O(𝑣 × 𝑘). The overall time
complexity of merge result is O(|𝑅 | × 𝑣 × 𝑘).

B. Performance Analysis of Knob Tuning

The knob tuning framework consists of two main parts:
offline processing and online processing. Offline processing is
performed in advance, so it does not affect the performance of
online ST-𝑘NN join. Online processing is further divided into

TABLE II
STATISTICS OF DATASETS

Attributes NYTrip DidiTraj DidiSP
Raw Size 11.6GB 8.3GB 1.9GB
# Records 87,110,491 39,224,513 9,108,396
# Coords 174,220,982 348,191,629 73,708,681
Temporal 2013/01/01 - 2018/10/01 - 2018/10/01 -
Domain 2013/06/30 2018/11/30 2018/11/30
Spatial (-74.07 : -73.75), (108.92 : 109.01), (108.92 : 109.01),
Domain (40.61 : 40.87) (34.20 : 34.28) (34.20 : 34.28)

two streams: Online Execution and Knob Tuning. The perfor-
mance of Online Execution has been analyzed previously. In
Knob Tuning, feature extraction scans 𝑅 and 𝑆 once, and most
importantly, it is only performed once, so it has little impact on
the whole performance. Bayesian optimization performs 𝑁𝐵𝑂

iterations in total. In each iteration, we replace the most time-
consuming ST-𝑘NN Join Executor with the efficient Execution
Time Predictor. Since the dimension of parameters is 3 and
Bayesian Optimizer can effectively guide the optimization
direction, we can achieve an excellent setting with a limited
number of 𝑁𝐵𝑂 (usually less than 50 as shown in Section VII).
To this end, the time of knob tuning can be negligible.

VII. EVALUATION

A. Datasets and Settings

Datasets. We use three real big datasets to verify the
performance of ST-𝑘NN join: 1) NYTrip [56]. We extract
six months of taxi trips in New York City. Each trip has
the location and time information of pick-up and drop-off,
respectively. The locations of a pick-up or a drop-off can be
modeled as point data (abbr. pt); 2) DidiTraj [57], which
contains two months of taxi trajectories in Xi’an, China. A
trajectory can be modeled as a line string (abbr. ls); and
3) DidiSP, which is a set of stay points extracted from DidiTraj
using the method proposed in [58]. A stay point is deemed as
a polygon (abbr. py). Table II shows the statistics.

Figure 9 and Figure 10 show the spatial and temporal
distributions of the datasets, respectively. We can observe that,
1) for each single dataset, the spatio-temporal distribution is
severely unbalanced, i.e., some spatial areas contain much
more records than others, and there are obvious temporal
peaks and valleys; 2) among different datasets, their spatio-
temporal distributions are not the same. Particularly, DidiSP is
extracted from DidiTraj, but their spatio-temporal distributions
are quite different. Unbalanced and various distributions of
different spatio-temporal datasets make it intractable to fine-
tune parameters for all ST-𝑘NN join requests manually.

(a) NYTrip (b) DidiTraj (c) DidiSP

Fig. 9. Spatial Distribution.
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Fig. 10. Temporal Distribution.

Settings. Table III shows the geometry combinations for
investigating the effects of the introduced parameters. To train
an Execution Predictor, we use 80% data as the train set, and
the rest as the test set. For each combination in Table III,
we extract 2,000 observations and train a single Execution
Predictor for each clustering setting. Table IV summarizes the
experimental parameters, where the default values are in bold.
By default, the experiments are conducted on a cluster of 5
nodes, with each node equipped with CentOS 7.4, 24-core
CPU and 128GB RAM. We deploy Hadoop 2.7.6 and Spark
2.3.3 in our cluster, assign 5 cores and 5GB RAM to the driver
program, and set up 6 executors in each node in the Spark
cluster. Each executor is assigned 5 cores and 16GB RAM.

TABLE III
DATASETS FOR PARAMETERS TUNING

Datasets Geometry R S
NYTrip pt ⋉ pt 10% pick-up points 10% drop-off points
DidiTraj ls ⋉ ls 10% samples 10% samples
DidiSP py ⋉ py 50% samples 50% samples
Mixture py ⋉ ls 50% DidiSP 10% DidiTraj

TABLE IV
PARAMETERS

Parameters Settings
# of Temporal Partitions 𝛼 50, 100, 200, 500, 1000

# of Spatial Partitions 𝛽 5, 10, 20, 50, 100
𝑏𝑖𝑛𝑁𝑢𝑚 in a TRC-index 10, 50, 200, 500, 1000

Query Parameter 𝛿 (minutes) 10, 20, 30, 40, 50
Query Parameter 𝑘 1, 5, 10, 15, 20

Data Size 10%, 20%, 30%, 40%, 50%,
(default values see Table III) 60%, 70%, 90%, 100%

# of Optimization Iterations 𝑁𝐵𝑂 1, 2, ..., 50, ..., 60
# of Nodes in Spark Cluster 1, 3, 5, 7

Metrics. In terms of the ST-𝑘NN join, we focus on three
metrics: 1) Execution Time (ET), which is the time cost for an
ST-𝑘NN join; 2) Copy Amplification (CA), which is defined
as the ratio of total copy times of objects in 𝑅 (or 𝑆) to |𝑅 | (or
|𝑆 |). For example, if an object 𝑟 intersects with 𝑛 ST-partitions,
it will be copied 𝑛 times, thus its copy amplification is 𝑛; and
3) Hit Rate (HR), which is defined as |𝑅′ |/|𝑅 |. 𝑅′ ⊆ 𝑅 is
a set of objects that can find their final ST-𝑘NNs in the first
round local join, so they do not participate in the second round
join. Note that our goal is to reduce the execution time. The
copy amplification and hit rate metrics can help us analyze the
computation performance.

When assessing Execution Time Predictor, the following
metrics are employed : 1) Mean Absolute Error (MAE),
which measures the average absolute difference between ob-
served and predicted outcomes. 2) Root Mean Square Error

(RMSE), which measures the average difference between
predicted values and the actual values. 3) Mean Absolute
Percentage Error (MAPE), which defines the accuracy of
the forecasting model. It represents the average of the absolute
percentage errors of each record in the training data.

Baselines. As this paper is the first to address the ST-
𝑘NN join problem, we rewrite the source code of two related
frameworks, i.e., Simba [2] and LocationSpark [3], [25], to
make them support ST-𝑘NN join. We do not compare the
works [35], [36] because their source codes are not released.
We also compare two variants of our proposed method (our
method is termed as ST-𝑘NNJ).
• Simba [2]. Simba provides efficient 𝑘NN join. We first

find the 2 × 𝑘 nearest neighbors for each 𝑟 ∈ 𝑅, then filter out
the objects 𝑠 ∈ 𝑆 that do not meet the temporal concurrency
requirement. It may not produce enough 𝑘 results, because of
the temporal filtering.
• LocationSpark (LS) [3], [25]. We rewrite its source code

to support ST-𝑘NN join, as we did for Simba. Note both Simba
and LocationSpark do not support complex data in the code.
• ST-𝑘NNJ𝑅 , which adopts R-tree for spatial partitioning.

This method makes spatial partitions based on the centroid
points of 𝑠 ∈ 𝑆 ′. Each 𝑠 ∈ 𝑆 is assigned to the nearest spatial
partition. Each spatial partition is an MBR containing all 𝑠 ∈ 𝑆

assigned to it. Each 𝑟 ∈ 𝑅 is assigned to all spatial partitions
that intersect with it.
• ST-𝑘NNJ𝑛𝑟 , which adopts Quad-tree for spatial partition-

ing just as ST-𝑘NNJ does, but does not remove duplicates
based on reference points before shuffling local join results.

In terms of execution time prediction models, we compare
the adopted XGBoost with nine widely-used models, includ-
ing Regression Tree (RT) [59], Random Forest (RF) [60],
KNearestNeighbors (KNN) [61], Ridge [62], Lasso [63], Ad-
aBoost (AB) [64], GradientBoost (GB) [65], Bagging [66] and
LightGBM (LGBM) [67]. We do not compare Bayesian opti-
mization with other knob tuning methods like Deep Learning
(DL)-based methods [48], [50] and Reinforcement Learning
(RL)-based methods [68]–[71]. This is because DL-based
methods require a large number of training observations which
are expensive to collect, and RL-based methods have been
proved to require much higher tuning overhead than Bayesian
optimization methods [47].

B. Effects of Parameters

Different Values of 𝛼 . Figure 11 presents the perfor-
mance of ST-𝑘NNJ with different values of 𝛼 . As shown in
Fig. 11(a), with an increasing 𝛼 , the execution time of all
dataset combinations first decreases, then increases. There are
two reasons for an increasing execution time with a smaller 𝛼
when 𝛼 < 100. Firstly, for a smaller 𝛼 , the number of objects
from 𝑆 in an ST-partition tends to be larger, thus the 3D R-
tree in the ST-partition gets bigger, and it needs more time to
perform a local ST-𝑘NN search with the 3D R-tree. Secondly,
a smaller 𝛼 leads to bigger temporal partitions, which weakens
the temporal filtering ability.

However, when 𝛼 > 100, the execution time gets more with
a bigger 𝛼 . The reasons could be 1) the copy rates of 𝑅 and 𝑆
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Fig. 11. Performance w.r.t. 𝛼
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Fig. 12. Performance w.r.t. 𝛽
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Fig. 13. Performance w.r.t. 𝑏𝑖𝑛𝑁𝑢𝑚

gets larger with an increasing 𝛼 , as shown in Fig. 11(b) and
Fig. 11(c); 2) a bigger 𝛼 results in a lower hit rate, as shown
in Fig. 11(d). That is, more objects 𝑟 ∈ 𝑅 cannot find their ST-
𝑘NNs in the first local join, therefore they need to participate
in the second join.

It is also interesting to see that in Fig. 11(a), the execution
time of ls-ls and py-ls is more than that of pt-pt, even
though the object number of pt-pt is much more than that
of ls-ls and py-ls (8.7m ⋉ 8.7m vs 3.9m ⋉ 3.9m vs
4.6m ⋉ 3.9m). This is because 1) it is more time-consuming
to calculate the distance between two complex objects; 2)
the copy amplification of 𝑆 for ls-ls and py-ls is much
more than that of pt-pt, as shown in Fig. 11(c). Another
interesting observation is that the copy amplification of 𝑅 for
pt-pt gets larger comparing 𝛼 = 50 to 𝛼 = 100 in Fig. 11(b),
resulting in a fierce increasing of execution time in Fig. 11(a)
and a slight drop off of hit rate in Fig. 11(d). It is because
the global temporal domain of NYTrip is six months, which
is much longer than that of other datasets. Given a specified
𝑏𝑖𝑛𝑁𝑢𝑚 = 200, a longer temporal domain gives a coarser
lower bound for TRC-index, which causes that more 𝑟 ∈ 𝑅

cannot find their ST-𝑘NN in the first round local join.
Different Values of 𝛽. Figure 12 demonstrates the perfor-

mance of ST-𝑘NNJ with different values of 𝛽. As shown in
Fig. 12(a), when 𝛽 gets larger from 5 to 100, the execution
time first drops, then increases slightly. When 𝛽 = 20, the
performance achieves the best. We also observe that with an
increasing 𝛽, the copy amplifications of both 𝑅 and 𝑆 get larger.
This is because with a bigger 𝛽, the area of an ST-partition
gets smaller, causing objects 𝑠 ∈ 𝑆 more easily to intersect
with more ST-partitions, thus the copy amplification of 𝑆 get
larger, especially for the polygon data and line string data, as
shown in Fig. 12(c). Smaller ST-partitions also result in less
objects in 𝑆 assigned to the same ST-partition. This further
causes objects 𝑟 ∈ 𝑅 harder to find their ST-𝑘NNs in the first
round join, leading to a lower hit rate (shown in Fig. 12(d))
and a larger copy amplification of 𝑅 (shown in Fig. 12(b)).

Different Values of 𝑏𝑖𝑛𝑁𝑢𝑚. As depicted in Fig. 13(a),
with the increase of 𝑏𝑖𝑛𝑁𝑢𝑚, the execution time first drops
significantly, then keeps smooth with a slight increase. This
is because with a bigger 𝑏𝑖𝑛𝑁𝑢𝑚, TRC-index can provide
a more precise lower bound, thus helps the objects 𝑟 ∈ 𝑅

more easily to find the ST-partitions that contain their ST-
𝑘NNs, reducing the copy amplification of 𝑅, as shown in
Fig. 13(b). A more precise lower bound improves the hit rate
as well, as shown in Fig. 13(d). We can observe that the
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Fig. 14. Performance w.r.t. 𝛿
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Fig. 15. Performance w.r.t. 𝑘

copy amplification of 𝑆 has nothing to do with 𝑏𝑖𝑛𝑁𝑢𝑚, as
shown in Fig. 13(c), because we partition 𝑆 before building
TRC-indexes. However, when 𝑏𝑖𝑛𝑁𝑢𝑚 is big enough, the
execution time tends to be stable, as the lower bound of TRC-
indexes is precise enough. Increasing 𝑏𝑖𝑛𝑁𝑢𝑚 only brings
in more data transmission among different machines. It is
interesting to see that the inflection point of pt-pt is larger
than that of others (see Fig. 13(a) and Fig. 13(b)). There
could be two reasons. Firstly, for point data, it is more easy
to use the bins to calculate its real number that satisfies the
temporal concurrency requirement, because the point data in
our experiments has a time span of 0. Secondly, the NYTrip
dataset has a much bigger global temporal domain than others,
which needs more bins to capture its temporal distribution.

Different Values of 𝛿 . Figure 14 shows the impact of 𝛿

on ST-𝑘NNJ performance. As shown in Fig. 14(a), with an
increasing 𝛿 , the execution time of complex object combina-
tions gets larger smoothly, as their copy amplification of 𝑅 gets
smaller sightly (shown in Fig. 14(b)), and their hit rate gets
higher slightly (shown in Fig. 14(d)). However, for pt-pt
combination, the execution time first drops significantly, and
then keeps stable. This is because for NYTrip dataset, the time
span of objects is 0. If 𝛿 is too small (e.g., 𝛿 = 10), its hit rate
is very low (see Fig. 14(d)), causing a huge copy amplification
of 𝑅 (see Fig. 14(b)). Again, we can see from Fig. 14(c) that
the copy amplification of 𝑆 has little to do with 𝛿 .

Different Values of 𝑘 . We can observe from Fig. 15(a) that
with a bigger 𝑘 , the execution time for all combinations get
larger linearly, because their hit rate decreases linearly (shown
in Fig. 15(d)), making their copy amplification of 𝑅 increase
linearly (shown in Fig. 15(b)). Figure 15 demonstrates that the
copy amplification of 𝑆 is not affected by 𝑘 .

Execution Time of Different Steps. Figure 16(a) shows
the execution time for different steps. We can find that the
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Fig. 16. Performance w.r.t. Steps and Data Size (for the left picture, we take
50% samples for both 𝑅 and 𝑆 ; for the right picture, we take pt-pt because
both Simba and LocationSpark do not support complex geometries)

first round local join for almost all combinations is the most
expensive, because we need to build local indexes in this step.
Besides, most objects 𝑟 ∈ 𝑅 can find their ST-𝑘NNs in the
first round local join, which reduces the computation of the
second round local join. It is interesting to see that the first
round local join for py-py is much less expensive than that
for other combinations. It could be the spatial distribution of
DidiSP is very sparse, and the data size of DidiSP is much
smaller than that of other datasets.

C. Comparing with Baselines

Figure 16(b) compares the performance of different meth-
ods. We only focus on pt-pt because both Simba and
LocationSpark do not support complex geometries. It is not
surprising that with a bigger data size, all methods need more
execution time. However, Simba fails when the data size is
greater than 10%, because it needs to copy 𝑆 too much,
resulting in memory overflow and redundant computation. Lo-
cationSpark takes over 9X more time than ST-𝑘NNJ, because
it is not designed for ST-𝑘NN join. We check its source code,
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Fig. 17. Effects of Knob Tuning on Varying Data Sizes.
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Fig. 18. Effects of Knob Tuning on Varying Numbers of Nodes (For the learned settings, the time includes both tuning time and execution time; Data size:
3, 000, 000 + 3, 000, 000).

and find that its proposed optimizer does not take effect for ST-
𝑘NN join. Location-Spark also fails when the data size reaches
40%, but our proposed ST-𝑘NNJ methods can easily support
much bigger data (even 100% data size), which verifies the
scalability of our methods. ST-𝑘NNJ is much faster than ST-
𝑘NNJ𝑅 , the reasons could be: 1) it is more efficient to build
a Quad-tree than an R-tree; 2) R-tree ignores the unsampled
areas in the spatial partitioning step, which leads to a poor
performance; 3) the ST-partitions acquired by R-tree may
intersect with each other, so we cannot remove duplicated
results using spatio-temporal reference points. ST-𝑘NNJ is
slightly faster than ST-𝑘NN𝑛𝑟 , as we can remove duplicates
before shuffling, which reduces the data transmission among
different machines. However, the improvement is marginal,
because the local join result transmission overhead is relatively
much smaller than the overall computation overhead.

D. Knob Tuning Verification

Evaluation of Predictors. Table V presents the average
performance of ten commonly-used machine learning models
adopted by Execution Time Predictors, from which we can see
that, XGBoost exhibits the overall best performance across all
the selected models in terms of three metrics. Therefore, it
is more suitable for our prediction task. Moreover, its ability
to parallelize tree construction using features and data points
allows it to handle larger datasets with faster computational
efficiency, making it well-suited for handling the growing
records in the Observation Set.

Effects of Varying Data Sizes. Figure 17 compares the
online processing time between manual settings (denoted as
“M”) and learned settings (denoted as “L”) across varying
data sizes. For manual settings, we adopt the parameters that
perform the best in Figures 11-13 (i.e., 𝛼 = 100, 𝛽 = 20

TABLE V
PERFORMANCE OF PREDICTORS

Models RT RF KNN Ridge Lasso AB GB Bagging LGBM XGB
MAE 11.43 8.35 14.61 12.72 12.01 15.86 9.13 9.42 8.95 8.34

RMSE 27.64 23.32 28.07 26.26 27.61 22.74 24.72 21.27 20.48 20.36
MAPE 0.16 0.17 0.23 0.22 0.22 0.27 0.16 0.13 0.15 0.13

and 𝑏𝑖𝑛𝑁𝑢𝑚 = 200). Note that for manual settings, their
tuning time is considered to be 0. We have the following
observations. (1) For all combinations and data sizes, the
online processing time with learned settings is always less than
that with manual settings, even if we consider the tuning time
for the learning-based method, which proves the effectiveness
of the proposed knob tuning framework. (2) The tuning time
of all combinations and data sizes is stable (about 4 seconds).
This is because we always perform the same iterations (i.e.,
50) to search the optimized parameter settings. It also verifies
that the feature extraction overhead can be ignored, since
larger datasets have the same tuning time. (3) Compared with
the execution time, the tuning time can be negligible, as we
replace the time-consuming ST-𝑘NN join operation with an
efficient model during the Bayesian optimization. (4) With
larger datasets, the difference between the manual settings and
learned settings becomes more significant. This is because the
execution time often increases with the growth of the data
size. When the data size becomes sufficiently large, even small
variations in knob settings can have a significant impact on the
execution time. Therefore, the advantages of parameters tuning
become more pronounced in such scenarios.

Effects of Varying # of Nodes. To test the scalability of the
proposed methods on different numbers of nodes in the cluster,
we investigate the performance of the learned settings and
manual settings on a cluster of 1, 3, 5, 7 nodes, respectively.
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As shown in Fig. 18, for all combinations of geometries,
with an increasing number of cluster nodes, the time of both
manual settings and learned settings first drops and then keeps
stable. Since with more cluster nodes, there are more computer
resources for ST-𝑘NNJ, accelerating the executing process.
However, when the number of nodes changes from 5 to 7,
the improvement of both methods becomes marginal, as the
system bottleneck turns into the network transmission among
different nodes. We can also observe that for all numbers of
nodes, the learned settings are better than manual settings,
which verifies the effectiveness of knob tuning. It is interesting
to see in Fig. 18(a) that the time of learned settings for point
data does not fluctuate significantly with different data nodes.
The reason could be that for point data, our learning models
can find the optimal settings more easily. Even in a single
node, the execution time can be very low.

Effects of Iterations. Figure 19 shows the effects of the
number 𝑁𝐵𝑂 of iterations. For Bayesian Optimizer, the number
of iterations can directly affect its results. When the number of
iterations is sufficiently large, Bayesian Optimizer can conduct
a very detailed exploration in the parameter space, identifying
the most likely parameter combinations. However, conducting
an excessive number of search iterations is time-consuming
and may not always yield significant improvements. As shown
in Fig. 19, Bayesian Optimizer can identify the optimal
parameters within 50 iterations. Beyond this point, further
iterations often do not lead to substantial improvements.

VIII. SYSTEM DEPLOYMENT

We integrate the ST-𝑘NN join method into JUST [26], a
distributed spatio-temporal data engine. As shown in Fig. 20,
the spatio-temporal data with various geometry types is stored
in HBase and indexed using Z2T index [26] (for point data)
or XZ2T index [27] (for non-point data). JUST system would
pre-compute the metadata (e.g., spatio-temporal distributions)
for each dataset and store the metadata in a MySQL database.
When answering an ST-𝑘NN Join request, JUST would load
the necessary data, and leverage the knob tuning models to
determine the introduced parameters. JUST also implements
a SQL engine, such that the ST-𝑘NN join can be performed
with a SQL-like statement:
SELECT * FROM 𝑅, 𝑆

WHERE st_knnjoin(𝑅.𝑔𝑒𝑜𝑚, 𝑆.𝑔𝑒𝑜𝑚,
𝑅.𝑡𝑚𝑖𝑛, 𝑅.𝑡𝑚𝑎𝑥, 𝑆.𝑡𝑚𝑖𝑛, 𝑆.𝑡𝑚𝑎𝑥, 𝑘, 𝛿)

> SELECT * FROM R, S WHERE st_knnjoin(...)
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Fig. 20. Implementation in JUST System [26].

where 𝑅 and 𝑆 are the names of two tables, and 𝑅.𝑔𝑒𝑜𝑚,
𝑆.𝑔𝑒𝑜𝑚, 𝑅.𝑡𝑚𝑖𝑛 , 𝑅.𝑡𝑚𝑎𝑥 , 𝑆.𝑡𝑚𝑖𝑛 , 𝑆.𝑡𝑚𝑎𝑥 are the spatio-temporal
field names of the two tables, respectively.

Table Panel

JustQL Panel

Result Panel

Fig. 21. User Interface of ST-𝑘NN Join in JUST.

Figure 21 shows the user interface of ST-𝑘NN join in JUST.
It consists of three panels: Table Panel, JustQL Panel and
Result Panel. Table Panel lists the tables in the system. In
this demo, we preset six tables of spatio-temporal objects
with various geometry types. Users can also upload their own
datasets. In JustQL Panel, we input a SQL-like statement, and
click the first button to run ST-𝑘NN join. Here, we perform an
ST-𝑘NN join on two point tables 𝑝𝑜𝑖𝑛𝑡01 and 𝑝𝑜𝑖𝑛𝑡02, where
𝑘 = 2 and 𝛿 = 100s. The join result is shown in Result Panel.

IX. RELATED WORKS

A. Spatial-Related Join

To the best of our knowledge, none of the existing works
are designed specially for ST-𝑘NN join. We classify spatial-
related join into three categories: 1) Spatial Join, 2) 𝑘NN Join,
and 3) Spatio-Temporal Join.

Spatial Join. Spatial join combines two sets of spatial
objects with a given spatial relation, such as containing,
overlapping and distance. It has been well studied for a few
decades, which can be divided into two categories: standalone
method and distributed method. Most standalone methods [18],
[19] adopt a two-phase framework, where in the first phase,
they generate candidate pairs according to the MBRs of spatial
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objects, and in the second phase, they check the spatial rela-
tionship of each pair. The work [20] provides a comprehensive
summary of the relevant technologies. To support massive
spatial objects, many distributed frameworks are proposed for
spatial join, such as Hadoop-GIS [72], SpatialHadoop [73],
LocationSpark [3], [25], SpatialSpark [74], GeoSpark [75],
Stark [76] and Simba [2]. Most of these distributed frame-
works first partition the two sets, where the candidate pairs are
assigned to the same partition. In each partition, they build a
local spatial index [38], [41] and perform a spatial join using
the standalone method. Finally, they merge local spatial join
results into a global one.
𝑘NN Join. Compared with spatial join, 𝑘NN join is much

more intractable, as it is hard to determine whether an object is
one of 𝑘NNs of the other. There are two types of methods for
distributed 𝑘NN join. The first is one-round join method [2],
[4]–[6]. They first partition 𝑅, and then copy 𝑆 to the target
partitions based on the pivots of voronoi diagram [4], the
partition center points [2], or space filling curves [5], [6], so
the 𝑘NNs of 𝑟 ∈ 𝑅 must locate in the same partition with 𝑟 .
This type of method may cause too many copies of 𝑆 , which
hinders the efficiency. The other is two-round join method [3],
[25], which partitions 𝑆 first, and then copies 𝑅 to the target
partitions for twice. As most 𝑟 ∈ 𝑅 can find their 𝑘NNs in the
first round, it is much more efficient than the former.

Spatio-Temporal Join. The works [35], [36], [77] consider
both spatial and temporal information, called spatio-temporal
join. It employs two primary methods, i.e., broadcast join for
the case when at least one of datasets can fit entirely into
memory of a Spark executor, and bin join for the case when
both datasets are too large to fit into memory. For bin join, it
first spatially partitions the dataset using quadtree-based grid,
and then temporally partitions the dataset with a temporal
interval. Stark [76] adds spatio-temporal support to Spark. It
includes spatial partitioners, different indexing modes, as well
as filter, join, and clustering operators. But Stark does not
discuss how to support spatio-temporal join in the paper. The
work [77] proposes a block-join method for spatio-temporal
joins. It first partitions the entire spatio-temporal data space
into equal-sized blocks, and then evaluates block trajectories
in the same and adjacent blocks to get pairs satisfying the
spatio-temporal join conditions. However, this work does not
support ST-𝑘NN join. Besides, it may face scalability problem
since it is a standalone implementation.

B. Knob Tuning

Knob tuning [47] is a technology of intelligent database. It
has become one of the hot directions with the development
of AI4DB [78] in recent years. Methods for knob tuning
include heuristic methods, deep learning (DL)-based methods,
reinforcement learning (RL)-based methods, and Bayesian
optimization (BO)-based methods. Heuristic methods based on
rules [79] usually achieve sub-optimal settings, while heuris-
tic methods based on searches [80] cannot utilize historical
tuning data and prior knowledge. DL-based methods [48],
[50] require a large number of prepared training samples
to well train the models. RL-based methods [68]–[71] are

suitable for high-dimensional configuration space exploration,
but they require high overhead. BO-based methods [48],
[49] can efficiently find high-quality knob settings with the
exploration-exploitation strategy. It first establishes a probabil-
ity distribution model according to the tuning history. Then,
the model provides the optional hyper-parameters. Finally,
the new observations with the optional hyper-parameters are
added [81]. The three steps repeat until the maximum number
of iterations is reached. With the progress of AI4DB, various
advanced models based on Bayesian optimization have been
proposed [49], [82]. In our ST-𝑘NN join problem, there are
only three parameters to be predicted. Besides, it requires
much time to collect many training samples since it is rel-
atively time-consuming to execute ST-𝑘NN join. To this end,
we adopt the BO-based method.

X. CONCLUSION

This paper proposes a novel and useful ST-𝑘NN join
problem, which finds the 𝑘 nearest neighbors considering
both spatial closeness and temporal concurrency. To efficiently
perform ST-𝑘NN join over big spatio-temporal data with any
geometry types, we propose a novel distributed solution based
on Apache Spark, which follows a two-round join frame-
work. We further propose a knob tuning framework based on
Bayesian optimization to determine the values of introduced
system parameters. The extensive experimental results based
on three big real datasets show that our method is much more
scalable and achieves 9X faster than baselines. Moreover, our
knob tuning framework can always find an appropriate setting
for each ST-𝑘NN join request.
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