
Distributed Spatio-Temporal k Nearest

Neighbors Join

Ruiyuan Li, Rubin Wang, Junwen Liu, Zisheng Yu,

Huajun He, Tianfu He, Sijie Ruan, Jie Bao,

Chao Chen, Fuqiang Gu, Liang Hong, Yu Zheng

Chongqing University, China

liruiyuan@cqu.edu.cn
System Demo About Me

mailto:liruiyuan@cqu.edu.cn

t3

t2t2
t4

t1t1

u1 u2 u3

t7t2

t1

p1

p2

p3

An Epidemic Prevention Example

 Suppose u1 is an infected user

 Find the spatially nearest user of each

check-in point of u1 (i.e., kNN join, k = 1)

 kNN(p1) = u2, kNN(p2) = u3, kNN(p3) = u3

 Both u2 and u3 are potentially infected

 If we also consider temporal information

 st-kNN(p1) = u2, st-kNN(p2) = u2, st-kNN(p3) = NaN

 Only u2 is potentially affected

Infected User

Spatial Closeness + Temporal Concurrency ST-kNN Join

A more precise epidemic prevention!

ST-kNN Join

 Definition of ST-kNN

 Given

 Object r and object set S

 Integer k and threshold δ

 Definition of ST-kNN Join



 Challenges

 Big Data: Era of IoT and 5G

 High Dimensionality: Spatial + Temporal

 Various Geometry Types: Point, Line String, Polygon

Most Existing Works for kNN Join

 Ignore the Temporal Information

 Do Not Support Complex Geometries, e.g., Line Strings, Polygons.

 r’s ST-kNN in S

 Temporal Concurrency

 Spatial Closeness: s ∈ S is the k nearest neighbors of r that satisfies temporal concurrency

r.tr

ETR(r.tr, δ)

s.tr

δδ

ETR(r.tr, δ)∩s.tr ≠ ∅

We are the first to address the

problem of ST-kNN Join

Framework: Two Round Join with Four Steps

First Round Join Second Round Join

 Process Big Spatio-Temporal Data Based on Apache Spark

 Consider Both Temporal Concurrency and Spatial Closeness

 Support All Geometry Types

 Point, line string, polygon, or even a mixed set of them

Step 1: Data Partition for S

 Goals

 Spatio-Temporal Proximity

 Each r find possibly its ST-kNNs in one partition

 Even Distribution

 Load balance

 Method

 Sample randomly S’ from S

 Temporal partition using Sweep Line Alg.

 Max temporal partition number: α (system para.)

 Disjoint, roughly equal number of samples

 Spatial partition based on Quad Tree

 Max spatial partition number: β (system para.)

 Disjoint, equal number of samples

 Reassign s ∈ S based on ST-partitions

A Temporal Partition

A Spatial

Partition

 Sample

 TP

 SP

 Reassign

S

S

tpi

i

jsp

r

Make multiple copies if s intersects multiple ST-partitions.

Step 2: First Round Local Join

 Goals

 For each r ∈ R, find an area EMBR(r, γ), such that its

ST-kNNs must intersect with EMBR(r, γ)

 Method

 Index Construction in Each ST-partition
 TRC-index: decide whether a partition has at least k objects

that meet the temporal concurrency requirement

 3D R-Tree[1]: support fast ST-kNN search

 Data Partition for R

 For each r ∈ R, reassign it to the nearest ST-partition that has

at least k objects satisfying the temporal concurrency

requirement, based on TRC-index

 Distance Bound Calculation

 Calculate γ based on the k-th nearest neighbor with 3D R-tree

TRC-Index

3D R-Tree

R
 r locates in r

EMBR(r, γ)

i

jsp

[0, 4) [4, 8) [8, 12) [12, 16]

b1 b2 b3 b4

[0, 4) [4, 8) [8, 12) [12, 16]

sum

minT

sum

maxT

[1] Zhu Q, Gong J, Zhang Y. An efficient 3D R-tree spatial index method for virtual geographic environments[J]. ISPRS

Journal of Photogrammetry and Remote Sensing, 2007, 62(3): 217-224.

TRC-Index: Time Range Count Index

 Requirements

 Efficiency

 Get the minimum number of objects whose

time ranges intersecting a given time range

 Lightweight

 Should be small enough to be broadcast

 Intuition: Exclusive Method

 If the number of objects whose time

ranges will not intersect with tr is at

most N, then the number of satisfied

objects is at least |Si| - N

An Example of TRC-Index

Step 3: Second Round Local Join

r

ETR(r.tr, δ)

1

is

3D R-Tree

2

is i

ks

1

js 2

js j

ks

3D R-Tree

 Goals

 For each r ∈ R, check all possible ST-partitions,

and generate local results.

 Method

 Reassign r ∈ R Based on EMBR(r, γ) and

ETR(r.tr, δ)

 Perform a local ST-kNN search Based on 3D

R-Tree

Step 4: Merge Result

1

is 2

is i

ks

1

js 2

js j

ks
 s1 s2 sk

(r, s1), ..., (r, sk)

 Goals

 Combine multiple local results, and

produce a global one

 A Straightforward Method

 Shuffle Local Results by r

 Combine Them into a Global Result

using Multiway Merge Algorithm

 Remove Duplicates

 Take the First k Combinations

 Our Method

 Remove Duplicates before Shuffling

Local Results Based on Spatio-

Temporal Reference Points

Too Heavy Network Transmission!

Evaluation

 Datasets

 Settings

 5 Nodes, 24-core CPU, 128GB RAM

 Hadoop 2.7.6, Spark 2.3.3

 30 Executors, 5 Cores and 16 GB RAM

 Metrics

 Execution Time (ET)

 Copy Amplification (CA)

 Hit Rate (HR)

Evaluation

More Scalable

9X Faster

System Demonstration http://stknnjoin.urban-computing.com/

Conclusion

 Contribution

Propose a novel and useful ST-kNN Join problem

Propose a two-round join framework based on Spark

 A new spatio-temporal partition method

 A new lightweight and effective index structure TRC-index

 Remove duplicates based on spatio-temporal reference points

Extensive experiments based on three real datasets shows the effectiveness

Deploy it to our product JUST, and public the source code

 Source Code: https://github.com/1085904057/spatialjoin

 Future Works

Cache some intermediate results

Cost models to determine good system parameters, e.g., α, β, binNum

Thanks!

Distributed Spatio-Temporal k Nearest

Neighbors Join

Ruiyuan Li, Chongqing University

liruiyuan@cqu.edu.cn

WeChat Official Account

Download the Slides by Inputting “ST-kNNJ_Slides”

