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An Epidemic Prevention Example

 Suppose u1 is an infected user

 Find the spatially nearest user of each

check-in point of u1 (i.e., kNN join, k = 1)

 kNN(p1) = u2, kNN(p2) = u3, kNN(p3) = u3

 Both u2 and u3 are potentially infected

 If we also consider temporal information

 st-kNN(p1) = u2, st-kNN(p2) = u2, st-kNN(p3) = NaN

 Only u2 is potentially affected

Infected User

Spatial Closeness + Temporal Concurrency ST-kNN Join

A more precise epidemic prevention!



ST-kNN Join

 Definition of ST-kNN

 Given

 Object r and object set S

 Integer k and threshold δ

 Definition of ST-kNN Join



 Challenges

 Big Data: Era of IoT and 5G

 High Dimensionality: Spatial + Temporal

 Various Geometry Types: Point, Line String, Polygon

Most Existing Works for kNN Join

 Ignore the Temporal Information

 Do Not Support Complex Geometries, e.g., Line Strings, Polygons.

 r’s ST-kNN in S

 Temporal Concurrency

 Spatial Closeness: s ∈ S is the k nearest neighbors of r that satisfies temporal concurrency

r.tr

ETR(r.tr, δ)

s.tr

δδ

ETR(r.tr, δ)∩s.tr ≠ ∅

We are the first to address the 

problem of ST-kNN Join



Framework: Two Round Join with Four Steps

First Round Join Second Round Join

 Process Big Spatio-Temporal Data Based on Apache Spark

 Consider Both Temporal Concurrency and Spatial Closeness

 Support All Geometry Types

 Point, line string, polygon, or even a mixed set of them



Step 1: Data Partition for S

 Goals

 Spatio-Temporal Proximity

 Each r find possibly its ST-kNNs in one partition

 Even Distribution

 Load balance

 Method

 Sample randomly S’ from S

 Temporal partition using Sweep Line Alg.

 Max temporal partition number: α (system para.)

 Disjoint, roughly equal number of samples

 Spatial partition based on Quad Tree

 Max spatial partition number: β (system para.)

 Disjoint, equal number of samples

 Reassign s ∈ S based on ST-partitions

A Temporal Partition

A Spatial 
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Make multiple copies if s intersects multiple ST-partitions.



Step 2: First Round Local Join

 Goals

 For each r ∈ R, find an area EMBR(r, γ), such that its

ST-kNNs must intersect with EMBR(r, γ)

 Method

 Index Construction in Each ST-partition
 TRC-index: decide whether a partition has at least k objects

that meet the temporal concurrency requirement

 3D R-Tree[1]: support fast ST-kNN search

 Data Partition for R

 For each r ∈ R, reassign it to the nearest ST-partition that has

at least k objects satisfying the temporal concurrency

requirement, based on TRC-index

 Distance Bound Calculation

 Calculate γ based on the k-th nearest neighbor with 3D R-tree

TRC-Index
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[1] Zhu Q, Gong J, Zhang Y. An efficient 3D R-tree spatial index method for virtual geographic environments[J]. ISPRS 

Journal of Photogrammetry and Remote Sensing, 2007, 62(3): 217-224.



TRC-Index: Time Range Count Index

 Requirements

 Efficiency

 Get the minimum number of objects whose

time ranges intersecting a given time range

 Lightweight

 Should be small enough to be broadcast

 Intuition: Exclusive Method

 If the number of objects whose time

ranges will not intersect with tr is at

most N, then the number of satisfied

objects is at least |Si| - N

An Example of TRC-Index



Step 3: Second Round Local Join

r

ETR(r.tr, δ)

 

1

is

3D R-Tree

 

2

is i

ks 

1

js 2

js j

ks 
 

3D R-Tree

 Goals

 For each r ∈ R, check all possible ST-partitions,

and generate local results.

 Method

 Reassign r ∈ R Based on EMBR(r, γ) and

ETR(r.tr, δ)

 Perform a local ST-kNN search Based on 3D

R-Tree



Step 4: Merge Result
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(r, s1), ..., (r, sk)

 Goals

 Combine multiple local results, and

produce a global one

 A Straightforward Method

 Shuffle Local Results by r

 Combine Them into a Global Result

using Multiway Merge Algorithm

 Remove Duplicates

 Take the First k Combinations

 Our Method

 Remove Duplicates before Shuffling

Local Results Based on Spatio-

Temporal Reference Points

Too Heavy Network Transmission! 



Evaluation

 Datasets

 Settings

 5 Nodes, 24-core CPU, 128GB RAM

 Hadoop 2.7.6, Spark 2.3.3

 30 Executors, 5 Cores and 16 GB RAM

 Metrics

 Execution Time (ET)

 Copy Amplification (CA)

 Hit Rate (HR)



Evaluation

More Scalable

9X Faster



System Demonstration http://stknnjoin.urban-computing.com/



Conclusion

 Contribution

Propose a novel and useful ST-kNN Join problem

Propose a two-round join framework based on Spark

 A new spatio-temporal partition method

 A new lightweight and effective index structure TRC-index

 Remove duplicates based on spatio-temporal reference points

Extensive experiments based on three real datasets shows the effectiveness

Deploy it to our product JUST, and public the source code

 Source Code: https://github.com/1085904057/spatialjoin

 Future Works

Cache some intermediate results

Cost models to determine good system parameters, e.g., α, β, binNum
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