
Distributed Spatio-Temporal k Nearest

Neighbors Join

Ruiyuan Li, Rubin Wang, Junwen Liu, Zisheng Yu,

Huajun He, Tianfu He, Sijie Ruan, Jie Bao,

Chao Chen, Fuqiang Gu, Liang Hong, Yu Zheng

Chongqing University, China

liruiyuan@cqu.edu.cn
System Demo About Me

mailto:liruiyuan@cqu.edu.cn

t3

t2t2
t4

t1t1

u1 u2 u3

t7t2

t1

p1

p2

p3

An Epidemic Prevention Example

 Suppose u1 is an infected user

 Find the spatially nearest user of each

check-in point of u1 (i.e., kNN join, k = 1)

 kNN(p1) = u2, kNN(p2) = u3, kNN(p3) = u3

 Both u2 and u3 are potentially infected

 If we also consider temporal information

 st-kNN(p1) = u2, st-kNN(p2) = u2, st-kNN(p3) = NaN

 Only u2 is potentially affected

Infected User

Spatial Closeness + Temporal Concurrency ST-kNN Join

A more precise epidemic prevention!

ST-kNN Join

 Definition of ST-kNN

 Given

 Object r and object set S

 Integer k and threshold δ

 Definition of ST-kNN Join

 Challenges

 Big Data: Era of IoT and 5G

 High Dimensionality: Spatial + Temporal

 Various Geometry Types: Point, Line String, Polygon

Most Existing Works for kNN Join

 Ignore the Temporal Information

 Do Not Support Complex Geometries, e.g., Line Strings, Polygons.

 r’s ST-kNN in S

 Temporal Concurrency

 Spatial Closeness: s ∈ S is the k nearest neighbors of r that satisfies temporal concurrency

r.tr

ETR(r.tr, δ)

s.tr

δδ

ETR(r.tr, δ)∩s.tr ≠ ∅

We are the first to address the

problem of ST-kNN Join

Framework: Two Round Join with Four Steps

First Round Join Second Round Join

 Process Big Spatio-Temporal Data Based on Apache Spark

 Consider Both Temporal Concurrency and Spatial Closeness

 Support All Geometry Types

 Point, line string, polygon, or even a mixed set of them

Step 1: Data Partition for S

 Goals

 Spatio-Temporal Proximity

 Each r find possibly its ST-kNNs in one partition

 Even Distribution

 Load balance

 Method

 Sample randomly S’ from S

 Temporal partition using Sweep Line Alg.

 Max temporal partition number: α (system para.)

 Disjoint, roughly equal number of samples

 Spatial partition based on Quad Tree

 Max spatial partition number: β (system para.)

 Disjoint, equal number of samples

 Reassign s ∈ S based on ST-partitions

A Temporal Partition

A Spatial

Partition

 Sample

 TP

 SP

 Reassign

S

S

tpi

i

jsp

r

Make multiple copies if s intersects multiple ST-partitions.

Step 2: First Round Local Join

 Goals

 For each r ∈ R, find an area EMBR(r, γ), such that its

ST-kNNs must intersect with EMBR(r, γ)

 Method

 Index Construction in Each ST-partition
 TRC-index: decide whether a partition has at least k objects

that meet the temporal concurrency requirement

 3D R-Tree[1]: support fast ST-kNN search

 Data Partition for R

 For each r ∈ R, reassign it to the nearest ST-partition that has

at least k objects satisfying the temporal concurrency

requirement, based on TRC-index

 Distance Bound Calculation

 Calculate γ based on the k-th nearest neighbor with 3D R-tree

TRC-Index

3D R-Tree

R
 r locates in r

EMBR(r, γ)

i

jsp

[0, 4) [4, 8) [8, 12) [12, 16]

b1 b2 b3 b4

[0, 4) [4, 8) [8, 12) [12, 16]

sum

minT

sum

maxT

[1] Zhu Q, Gong J, Zhang Y. An efficient 3D R-tree spatial index method for virtual geographic environments[J]. ISPRS

Journal of Photogrammetry and Remote Sensing, 2007, 62(3): 217-224.

TRC-Index: Time Range Count Index

 Requirements

 Efficiency

 Get the minimum number of objects whose

time ranges intersecting a given time range

 Lightweight

 Should be small enough to be broadcast

 Intuition: Exclusive Method

 If the number of objects whose time

ranges will not intersect with tr is at

most N, then the number of satisfied

objects is at least |Si| - N

An Example of TRC-Index

Step 3: Second Round Local Join

r

ETR(r.tr, δ)

1

is

3D R-Tree

2

is i

ks

1

js 2

js j

ks

3D R-Tree

 Goals

 For each r ∈ R, check all possible ST-partitions,

and generate local results.

 Method

 Reassign r ∈ R Based on EMBR(r, γ) and

ETR(r.tr, δ)

 Perform a local ST-kNN search Based on 3D

R-Tree

Step 4: Merge Result

1

is 2

is i

ks

1

js 2

js j

ks
 s1 s2 sk

(r, s1), ..., (r, sk)

 Goals

 Combine multiple local results, and

produce a global one

 A Straightforward Method

 Shuffle Local Results by r

 Combine Them into a Global Result

using Multiway Merge Algorithm

 Remove Duplicates

 Take the First k Combinations

 Our Method

 Remove Duplicates before Shuffling

Local Results Based on Spatio-

Temporal Reference Points

Too Heavy Network Transmission!

Evaluation

 Datasets

 Settings

 5 Nodes, 24-core CPU, 128GB RAM

 Hadoop 2.7.6, Spark 2.3.3

 30 Executors, 5 Cores and 16 GB RAM

 Metrics

 Execution Time (ET)

 Copy Amplification (CA)

 Hit Rate (HR)

Evaluation

More Scalable

9X Faster

System Demonstration http://stknnjoin.urban-computing.com/

Conclusion

 Contribution

Propose a novel and useful ST-kNN Join problem

Propose a two-round join framework based on Spark

 A new spatio-temporal partition method

 A new lightweight and effective index structure TRC-index

 Remove duplicates based on spatio-temporal reference points

Extensive experiments based on three real datasets shows the effectiveness

Deploy it to our product JUST, and public the source code

 Source Code: https://github.com/1085904057/spatialjoin

 Future Works

Cache some intermediate results

Cost models to determine good system parameters, e.g., α, β, binNum

Thanks!

Distributed Spatio-Temporal k Nearest

Neighbors Join

Ruiyuan Li, Chongqing University

liruiyuan@cqu.edu.cn

WeChat Official Account

Download the Slides by Inputting “ST-kNNJ_Slides”

