Distributed Spatio-Temporal k Nearest
Neighbors Join

Huajun He Tianfu He Sijie Ruan, Jle Bao,
Chao Chen, Fugiang Gu, Liang Hong, Yu Zheng

Chongging University, China

System Demo

mailto:liruiyuan@cqu.edu.cn

An Epidemic Prevention Example

Infected User

1 Suppose u, is an infected user \i @ [ﬁl
P2 @
d Find the spatially nearest user of each
patiatly Uy Uz U3 @ i i
check-in point of u, (i.e., kNN join, k=1 4
P 1 (J) 01 t, b D3
d kNN(p,) = uy, KNN(p,) = uz, KNN(pg) = us i
d Both u, and u, are potentially infected @ @ @ t
: : :] St { 7, !
 If we also consider temporal information 3
O st-kNN(p,) = u,, St-kNN(p,) = u,, st-kNN(p3) = NaN
d Only u, is potentially affected > A more precise epidemic prevention!

Spatial Closeness + Temporal Concurrency = ST-KNN Join

ST-kNN Join

A Definition of ST-kNN O 9

ETR(r.tr, 0)
[

P ETR(r.tr, o)Ns.tr # @
]

J

3 Given Q r’s ST-KNN in S /
O Object r and object set S O Temporal Concurrency h S\EI’

O Integer k and threshold ¢ O Spatial Closeness: s € S is the k nearest neighbors of r that satisfies temporal concurrency

L Definition of ST-KNN Join
Q RxS={(r,s)|Vr € R,Vs € ST-kNN(r, k, 5,S5) }

1 Challenges
U Big Data: Era of 10T and 5G
U High Dimensionality: Spatial + Temporal

Q Various Geometry Types: Point, Line String, Polygon [*

5G Connections & Devices

@ Check-in (point)

il Traj. (line)
1. "—’@.’ 0”0

- Stay point (polygon)

1 Most Existing Works for kNN Join

O Ignore the Temporal Information

L Do Not Support Complex Geometries, e.g., Line Strings, Polygons.

We are the first to address the
problem of ST-KNN Join

Framework: Two Round Join with Four Steps

1
1
1
| A Temporal Partition |, | | e T e I ETR(r.tr, 9) 3DRTmc:—|i!i
"_.« :‘:‘ ",'- i [;J [':J[;'I-[—-m] E : | l I ||“| I:,E i
T® TP ;‘ ‘ T“‘|[1 |[)15 *|IL ol _ i it - :: (CC OO0 sy [s2 | oee | 50
Partition | _, i : Dl Vr locates in ';p o i } =t (r, s1)
(O Sample |- ,4:'\ foend . . AW : cedemnaden (?’5_32)
S i E ; N ' :
D Reasignl.o o B TR - By)
S | & ", 3DR-Tree | ! -
,,,,,,,,,,,,,,,,, | . .
(a) Data Partition for § (b) First Round Local Join i (¢) Second Round Local Join (d) Merge Result
. ; I ;
First Round Join ; Second Round Join

1 Process Big Spatio-Temporal Data Based on Apache Spark Jz
A Consider Both Temporal Concurrency and Spatial Closeness S “‘“6’.
 Support All Geometry Types p

d Point, line string, polygon, or even a mixed set of them

Step 1: Data Partition for S

1 Goals

1 Spatio-Temporal Proximity
O Each r find possibly its ST-KNNs in one partition

L Even Distribution
1 Load balance

] Method

O Sample randomly S’ from S

L Temporal partition using Sweep Line Alg.
O Max temporal partition number: a (system para.)
O Disjoint, roughly equal number of samples

1 Spatial partition based on Quad Tree

O Max spatial partition number: £ (system para.)
O Disjoint, equal number of samples

A Temporal Partition tp; L |

— ®SP._ - ——
> A Spatial VA
Partition s
@ Sample ORI -E .

>

<1

Reassigni.... /\ﬁ ,,,,,

] Reassign s € S based on ST-partitions— Make multiple copies if s intersects multiple ST-partitions.

Step 2: First Round Local Join

4 Goals
O For each r € R, find an area EMBR(r, y), such that its
ST-kNNs must intersect with EMBR(r, y)
D MethOd E Toin [O,T4) [4T8) [8,T12) [12T16] E
O Index Construction in Each ST-partition o] wa el =
0O TRC-index: decide whether a partition has at least k objects : ¢TR(§ Inéex ¢ —
TF o e - TN
 Data Partition for R ...
Q For each r € R, reassign it to the nearest ST-partition that has : §—‘
;—% éii :% i EMBR(r, y)

at least k objects satisfying the temporal concurrency 3D R-Tree
requirement, based on TRC-index ~ eeeeeeeessesosooeseseeseeseeeoooood

[Distance Bound Calculation
 Calculate y based on the k-th nearest neighbor with 3D R-tree

[1] Zhu Q, Gong J, Zhang Y. An efficient 3D R-tree spatial index method for virtual geographic environments[J]. ISPRS
Journal of Photogrammetry and Remote Sensing, 2007, 62(3): 217-224.

TRC-Index: Time Range Count Index

 Requirements d Intuition: Exclusive Method
1 Efficiency If the number of objects whose time
O Get the minimum number of objects whose ranges will not intersect with tr is at

time ranges intersecting a given time range

O Lightweight

O Should be small enough to be broadcast

most N, then the number of satisfied
objects Is at least |S;| - N

Temporal Domain count 2 I 0 2 sum S 3 2 2 ETR(r.tr, 0) = [2, 4]
oy b by b S S SO S N B S S S ——
ot 0, mw|we [es sz Tr[0e [0 [5.12)[02.16] | TRCSearch(2, 727) TRCSearch(d, T)
5 14 b b, by by E’} s by by bs by :JI g
|1 trs ! 1;*‘|_*41|5 T | 10.4) | [4.8) |81 [12,16]] | | T | [0.4) | [4.8) | [8,12) [[12, 16] | |
> n amd T T V| |y ¥ T ot
(a) Time Range Database (b) Count for Each Bin (c) TRC-Index (d) TRC Search Example

An Example of TRC-Index

Step 3: Second Round Local Join

] Goals

d For each r € R, check all possible ST-partitions,

and generate local results.

1 Method
 Reassigh r € R Based on EMBR(r, y) and

ETR(r.tr, o)
1 Perform a local ST-kNN search Based on 3D

R-Tree

ETR(r.tr, 6 £3D R-Tree
| b
= Ao
....... e § e
18]S S,
s [s)]--]si
TORTeLL]

Step 4: Merge Result

4 Goals —— i
 Combine multiple local results, and 5| S L S NI S .
produce a global one Slj Szj Skj (r. 5D . (.5
A A Straightforward Method -
1 Shuffle Local Results by r \

J Combine Them into a Global Result

using Multiway Merge Algorithm > Too Heavy Network Transmission!
d Remove Duplicates

[Take the First k Combinations

J ETR(r.tr,)\ — riaii]
Q Our Method . ey g
d Remove Duplicates before Shuffling '0:- ---------- L 1‘ 777777 ;)_~
Local Results Based on Spatio- MER() EMBR@) MBR(r) LEMBR(s)
Temporal Reference Points T EMBR(G7) | " EMBRG).

Evaluation

1 Datasets
Attributes NYTrip DidiTraj DidiSP
Raw Size 11.6GB 8.3GB 1.9GB
Records 87,110,491 39,224,513 9,108,396
Coords 174,220,982 348,191,629 73,708,681
Temporal | 2013/01/01 - 2018/10/01 - 2018/10/01 -
Domain 2013/06/30 2018/11/30 2018/11/30
Spatial |(-74.07 : -73.75), |(108.92 : 109.01), [(108.92 : 109.01),
Domain | (40.61:40.87) | (34.20:34.28) | (34.20 : 34.28)
1 Settings 1 Metrics
1 5 Nodes, 24-core CPU, 128GB RAM 1 Execution Time (ET)
1 Hadoop 2.7.6, Spark 2.3.3 1 Copy Amplification (CA)
1 30 Executors, 5 Cores and 16 GB RAM 1 Hit Rate (HR)

[}

I
L1

450

400 |-
350 |
300 |-
2250 |-
E 200
150 |-
100 |-
50 |

XXX l I I
Stepl -
Step2 siepd

g

pt-pt py-py Is-Is py-Is

Combinations

350 | l I
300 L PPt Isls e
py-py > py-ls

1 L ! 15

I | |
ot — LS
ST-KNNJp &= Simba [

ST_KNNIY

3500
3000
0 2500
1500
1000
500

10 20 30 40 50
Data Size (%)

More Scalable
IX Faster

System Demonstration http://stknnjoin.urban-computing.com/

N _=
n
[

. g_UST '-Jf_.?].S EE D, JustTestUser
HIRME RS2
e FE=E ~
+ o < & ®EST || mEk || OEst || ASH || 48A = o @ ¢
EeZesEiR C | [EHi A =qliBA. ..
(8 default
E linestring01 < [
El linestring02 = [
& point01 < [[y
E point02 < I
& polygon01 =
E polygon02 < [
Gt < W
(8 yanfa]
(&) share
el C mpmmiEc = =R 1 x
A
HiEdE ES AiTsOL AaTiE AT *
21607 SELECT * FROM point01 t1, point02 2 ... RETh 2021-10-16 10:42:39
21606 SELECT * FROM point01 t1, point02 t2 ... RO 2021-10-16 10:38:30

21605 select * from linestring01 REIH 2021-10-16 10:37:59

Conclusion

 Contribution
dPropose a novel and useful ST-kKNN Join problem

dPropose a two-round join framework based on Spark

A new spatio-temporal partition method

A new lightweight and effective index structure TRC-index
d Remove duplicates based on spatio-temporal reference points

L Extensive experiments based on three real datasets shows the effectiveness

dDeploy it to our product JUST, and public the source code
1 Source Code: https://github.com/1085904057/spatialjoin

] Future Works

d Cache some intermediate results
1 Cost models to determine good system parameters, e.g., a, £, binNum

Distributed Spatio-Temporal k Nearest
Neighbors Join

Thanks!

Ruiyuan Li, Chongging University WeChat Official Account
liruiyuan@cqu.edu.cn Download the Slides by Inputting “ST-kNNJ_Slides”

