IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

EAR-MM: An Efficient Adaptive and Robust Algorithm for
Streaming Map Matching

Yangyang Sun, Tianyu Huang, Zijian Zhang, Ruiyuan Li, Chao Chen, and Yu Zheng Fellow, IEEE

Abstract—Streaming map matching is essential for real-time
location-based services, such as navigation systems and traffic
monitoring, but maintaining accuracy under dynamic conditions
with noisy GPS data presents significant challenges. We propose
EAR-MM, an efficient, adaptive and robust streaming map
matching algorithm designed to address these issues. To mitigate
the impact of GPS noise, EAR-MM incorporates a candidate
reusing mechanism that ensures stable candidate selection, en-
hancing robustness against noisy data. Additionally, a rollback
mechanism is employed to leverage new data to correct previous
matching errors, incrementally improving accuracy. EAR-MM
also features an adaptive parameter tuning component, which
dynamically adjusts parameters based on changing environmen-
tal conditions, ensuring consistent performance across diverse
contexts. To meet real-time processing requirements, EAR-MM
accelerates shortest-path calculations using a bidirectional Dijk-
stra algorithm with step-level caching, balancing memory con-
sumption and computational efficiency effectively. Experimental
evaluations on two real-world trajectory datasets from Chengdu
and Wuxi demonstrate that EAR-MM significantly outperforms
existing methods in terms of accuracy and efficiency, and adapts
effectively to diverse geographic conditions. The source code is
publicly available'.

Index Terms—map matching, trajectory data mining, stream-
ing processing.

I. INTRODUCTION

HE rapid growth of location-based services has led to an

enormous volume of GPS (Global Positioning System)
trajectory data [1], [2], which often contains inherent inaccu-
racies and noise, necessitating effective methods for mapping
GPS points to corresponding road segments—a process known
as map matching [3]. Streaming map matching, which involves
continuously updating the matched path as new GPS points are
received, is particularly important for real-time applications
such as navigation systems [4], [5], traffic monitoring [6], and
intelligent transportation systems [7]-[9].

This paper is supported by the National Natural Science Foundation of
China (62572086, 62322601, 62172066), the Fundamental Research Funds
for the Central Universities (2024IAIS-QNO017), Major Basic Research Project
of Shandong Provincial Natural Science Foundation (ZR2024ZD03) and
the Independent Research Project of State Key Laboratory of Mechanical
Transmission for Advanced Equipment (SKLMT-ZZKT-2024R07).

Yangyang Sun, Tianyu Huang, Zijian Zhang and Ruiyuan Li are
with College of Computer Science, Chongging University, China and
Start Lab, Chongqing University, China (e-mail: sunyangyang@cqu.edu.cn;
tlanyu@stu.cqu.edu.cn; zijian@stu.cqu.edu.cn; ruiyuan.li@cqu.edu.cn). Chao
Chen is with the State Key Laboratory of Mechanical Transmis-
sion for Advanced Equipments, Chongqing University, China (e-mail:
cschaochen@cqu.edu.cn). Yu Zheng is with JD Intelligent Cities Research,
China, JD iCity, JD Technology, China, Xidian University, China and Beijing
Key Laboratory of Traffic Data Mining and Embodied Intelligence, China
(e-mail:msyuzheng @outlook.com).

Yangyang Sun and Tianyu Huang contributed equally to this work.

Ruiyuan Li is the corresponding author of this paper.

Ihttps://github.com/Spatio-Temporal-Lab/Streaming TrajectoryMapMatching

Streaming map matching presents unique challenges due
to the complexities of real-time processing and the dynamic
nature of GPS data. Firstly, unlike batched methods that
utilize complete trajectories to improve accuracy, streaming
map matching must incrementally process GPS points without
accessing to future data, which imposes strict constraints on
computational efficiency and algorithmic robustness. Secondly,
GPS data are often noisy, prone to signal loss, and irregularly
sampled [10], which complicates the accurate alignment of a
trajectory with the underlying road network. Thirdly, streaming
environments are characterized by fluctuating road conditions,
including sudden changes in road density and frequent path
deviations, necessitating adaptive strategies to maintain consis-
tent accuracy and efficiency. Therefore, an effective streaming
map matching approach must be both adaptive and highly
efficient. Balancing these competing demands—accuracy, ef-
ficiency, and adaptability—in real time constitutes the core
challenges of streaming map matching.

Map matching methodologies can be broadly classified into
batched and streaming approaches. Batched methods operate
on complete trajectory datasets, leveraging global information
to achieve high accuracy [11]-[14]. However, they are unsuit-
able for streaming scenarios due to their reliance on complete
trajectories and inability to adapt in real time. In contrast,
streaming methods can be divided into real-time output and
delayed output approaches. real-time output methods [15]-
[17], provide immediate results as GPS points are received,
enabling real-time processing. However, these methods often
struggle with robustness and accuracy, especially in the pres-
ence of noisy GPS signals or irregular sampling intervals. On
the other hand, delayed output methods [18]-[20] improve
accuracy by processing data within a defined time window
before generating the matched path, but this introduces latency,
which is undesirable for real-time applications. Moreover,
most streaming methods use fixed parameters or rely on
models trained specifically for certain urban environments,
which makes them unable to adapt dynamically to changing
real-time conditions, thereby affecting accuracy.

To address these challenges, we propose EAR-MM, an
efficient, adaptive and robust algorithm specifically designed
for the complexities of streaming map matching, delivering
real-time output that seamlessly integrates with dynamic data
sources. EAR-MM achieves these goals through a combination
of innovative techniques that balance real-time processing
demands, ensure robustness against noisy GPS data, and adapt
to diverse environmental conditions. The primary contributions
of this work are summarized as follows:

(1) To enhance robustness, EAR-MM combines Candidate
Searching and Candidate Reusing to improve candidate selec-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

tion and mitigate noisy GPS data.

(2) To ensure adaptiveness, we propose an automatic param-
eter adjustment mechanism with gradient descent to optimize
observation and transition probabilities based on changing
conditions.

(3) To improve efficiency, we propose a Streaming Inference
method that ensures real-time map matching. It accelerates
pathfinding using bidirectional Dijkstra and reduces redundant
computations with step-level caching.

(4) Experimental results show that EAR-MM outperforms
existing methods in robustness, adaptiveness and efficiency,
delivering faster and more accurate real-time map matching.

The remainder of this paper is organized as follows:
Section II reviews related works, and Section III provides
necessary preliminaries. Section IV outlines the framework of
EAR-MM, while Section V and Section VI present the detailed
algorithmic design and experimental results, respectively. Sec-
tion VII concludes with a summary of findings.

II. RELATED WORKS

Various techniques are employed in the development of map
matching algorithms [3], which are generally categorized into
batched and streaming methods. The streaming methods, in
turn, can be further subdivided into delayed output methods
and real-time output methods.

A. Batched Methods

Batched methods utilize the complete GPS trajectory to find
a globally optimal matched path. Li et al. [12] propose a dis-
tributed HMM (Hidden Markov Model)-based map matching
framework with a many-to-many shortest path query algo-
rithm, which leverages road network hierarchical contraction
to achieve fast map matching on large-scale trajectory data.
Several studies [20]-[23] have introduced improvements to
HMM-based methods. To address low-quality trajectory data,
Jiang et al. [13] present a deep learning-based approach that
enhances trajectory representation by incorporating historical
patterns. Wang et al. [10] propose a probabilistic interpolation
method that dynamically generates probability values for in-
terpolated points. Feng et al. [24] introduce DeepMM, which
combines deep learning and data augmentation to improve
matching performance under data sparsity and noise. Building
on this, Liu et al. [25] develop GraphMM, a graph-based
method that exploits correlations between trajectories and road
networks. Since batched methods require global data, they are
not suitable for streaming scenarios.

B. Streaming Methods

Streaming methods incrementally infer matched paths based
on streaming GPS observations. Goh et al. [18] implement
an HMM-based approach using an online Viterbi algorithm
with a variable sliding window, allowing for partial matching
results when convergence points are detected. However, in
the presence of noisy data or a large sampling interval,
the matching accuracy of HMM decreases significantly. In
addition to HMM-based approach, Chen et al. [19] present

a high-quality and computationally efficient algorithm that
segments trajectories and makes full use of vehicle heading
information. The aforementioned methods typically require the
collection of a specified number of points prior to matching,
which improves accuracy but results in delayed output.

To achieve real-time output while ensuring accuracy,
Taguchi et al. [26] introduce a method that employs path
prediction and Bayesian filtering to identify the most probable
future candidate paths. Qi et al. [17] present a novel framework
that leverages Spark Streaming and GPU-based heterogeneous
computing to process large-scale, real-time trajectory data.
Lv et al. [27] propose a self-adjusting online map matching
method based on the Hidden Markov Model, addressing
the need for real-time, low-latency trajectory matching. This
approach defines calculation formulas for observation and tran-
sition probabilities in HMM and incorporates three adjustment
strategies to handle noise points, dense points and offset points,
thereby enhancing algorithm stability and accuracy. Similarly,
He et al. [15] introduce an enhanced weight-based real-time
map matching algorithm tailored for complex and dense urban
road networks. This algorithm dynamically adjusts weights for
key criteria—such as distance, heading difference, direction
difference and segment connectivity—and introduces a novel
confidence level calculation to improve reliability. In streaming
scenarios, where road conditions change dynamically, these
methods often fall short due to their reliance on fixed pa-
rameters, limiting their adaptability to changing conditions.
To address this, Hu et al. [16] propose an adaptive algorithm
that incorporates a collaborative evaluation model for filtering
out low-quality measurements and a self-tuning mechanism
for dynamically adjusting feature weights. While this enables
streaming map matching, these methods still encounter chal-
lenges such as accuracy degradation and computational delays
under varying conditions.

III. PRELIMINARIES

Definition 1. GPS Point. A GPS point represents the geo-
graphical location of an object at a specific time, defined by
its latitude, longitude, and timestamp: p; = (lat;,lon;,t;),
where (lat;,lon;) are the coordinates at time t;.

Definition 2. Road Segment. A road segment is a directed
edge connecting two intersections in a road network, defined
as e; = (vj,vg), where v; and vy are intersections. Each
segment has an associated distance d(e;).

Definition 3. Directed Road Network. A directed road net-
work consists of intersections (nodes) and road segments
(edges), where edges may be one-way or two-way. Formally,
G=(V,E), where V is the set of intersections and & the set
of road segments. Two-way edges have two road segments in
opposite directions.

Definition 4. Path. A path in a directed road network is a
sequence of connected road segments from a starting node
to a destination node. Formally, a path ‘P from node vs to
node vq is P = {e1,ea,...,ex}, with each e; = (vj,vy)
connecting nodes v; and vy. The total length of the path is
Length(P) = Y2F_ d(e;).

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Candidate Preparation

Probability Calculation

Streaming Inference

Observation Probability
Calculation

New GPS II o-ad
Point Network

Candidates Matching
Score Calculation

Candidates Searching

Transition Probability
Calculation

Online Viterbi Inference

l

Candidates Reusing

____________ l
l i Step-Level Cache ; l

[

Rollback Verification

Candidate Sets

Automatic Parameter
Adjustment

Matching Results

=

Fig. 1. Framework of EAR-MM.

Definition 5. Trajectory Stream. A trajectory stream is a
sequence of GPS points: T = {p1,p2,...,Pn,-.-}. Real-world
trajectories may have noise and irregular sampling intervals.

Problem Definition. Streaming Map Matching is a process of
incrementally updating a path P on a road network G = (V, £)
as new GPS points from a trajectory stream 7 = {p1,po, ... }
are received.

Fig. 2 illustrates the process of streaming map matching,
green hollow points represent the original GPS locations,
which typically deviate from the road due to noise. Red solid
points mark the GPS locations matched to the road network.
The blue solid line represents the current matched path, and the
orange dashed line shows the previous matched path before the
GPS point, p3, was updated. In this example, the matched path
changes between points p, and p3, meaning that the original
path is no longer suitable for the current GPS location, and
a new matched path is computed. At the same time, the path
is extended between points p3 and ps, reflecting that as new
GPS points are received, the path is further extended along
the road network.

O GPS point
@ Matched point

Previous path
— Current path

Fig. 2. Example of Streaming Map Matching.

IV. FRAMEWORK

The framework of EAR-MM is illustrated in Fig. 1, com-
prising three primary modules: Candidate Preparation, Prob-
ability Calculation, and Streaming Inference.

Candidate Preparation. This phase involves identifying po-
tential candidates based on the new GPS point and road
network data. To reduce GPS noise, candidates identified

previously are reused, enhancing the stability of the candidate
sets. These refined sets are then passed to the next module.
Probability Calculation. This phase calculates key probabil-
ities to evaluate candidate transitions. The observation proba-
bility assesses how accurately each candidate matches the GPS
point, while the transition probability measures the likelihood
of moving between candidates. To optimize efficiency, a
step-level cache limits stored data, balancing memory usage
with computational speed. An automatic parameter adjustment
module is also proposed to improve matching accuracy based
on environmental conditions and data quality.

Streaming Inference. This phase focuses on real-time path
inference. The system calculates a matching score for candi-
dates and uses online Viterbi inference to determine the most
probable path. A rollback verification mechanism allows the
system to revisit previous inferences with new GPS points,
improving the overall precision of matching results.

V. DESIGN OF EAR-MM
A. Candidate Preparation

This section introduces the Candidate Preparation module

of the EAR-MM algorithm. The main goal of this module
is to generate candidate locations on the road network for
each incoming GPS point in real-time. We propose a candidate
selection strategy designed to enhance the robustness of the
candidate set. Accurate candidate generation is critical, as it
directly influences subsequent calculations and, ultimately, the
overall accuracy of the map matching process.
Candidate Searching. The first step in Candidate Preparation
is candidate searching, where potential candidate points on the
road network are identified for a given GPS point. Due to GPS
inaccuracies, such as signal interference or multipath effects. It
is essential to project the GPS point onto nearby road segments
for identifying candidate locations.

As illustrated in Fig. 3(a), a search radius r (defaulting
to 50m) is established around the GPS point ps. For each
road segment within this radius, the closest position to ps is
identified as a candidate point, i.e., ¢5 1, 5.2, ¢5,3. To expedite
the search process, an R-tree structure is employed to effi-
ciently locate these candidate points within the radius. Only
these closest points from each segment are retained for further

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

O Previous GPS Point
O Candidate Point

@ Current GPS Point
= Current Path

@Matched Point
----- » Loop Path

(a) Candidate Searching (b) Candidate Reusing

Fig. 3. Illustration of Candidate Searching and Candidate Reusing.

Algorithm 1: Candidate Reusing Algorithm

Input: Previous matched point my., current GPS point peur,
current candidate set Ceyr, speed threshold v
Output: Updated candidate set Ceyr fOr peur
1 foreach candidate point ¢; € Ceyy do
if c;.eld = my..eld and c;.offset < my.offset then
if dpatn (i, Mpre) /(Ci.t — Mppe.t) > v then
L | Add mype to Ceur; break;

P

5 return Coy

evaluation, ensuring that only the most relevant candidate
points are selected for subsequent processing.

Candidate Reusing. This step ensures robust candidate selec-
tion, particularly in noisy environments where GPS data may
suggest unrealistic movements, such as backward loops.

As depicted in Fig. 3(b), the current GPS point p5 suggests
a backward movement compared to the previously matched
point 4. In specific, a new candidate point c5 ; may indicate a
loop path, which is unrealistic in this context. Instead of adopt-
ing such a candidate, the algorithm incorporates the previously
matched point my into the candidate set, thereby ensuring path
continuity and avoiding mapping errors. By incorporating my
and comparing it with ¢5 ; through probabilistic calculations,
the algorithm effectively prevents the formation of a backward
loop, thereby generating a more reliable matched path that
accurately reflects the true trajectory.

Algorithm 1 starts by iterating over each candidate point ¢;
in the current candidate set C..,,,.. For each candidate, it checks
whether the candidate lies on the same road segment as the
previously matched point my,.. by comparing their road IDs
(Line 2). If the candidate is on the same segment but its offset
is smaller than the offset of the previously matched point,
as shown in the Fig. 3(b), indicating a potential backward
movement, the algorithm calculates the speed between the
candidate c; and the current GPS point p.,, (Line 3). This
speed is determined by dividing the path distance traveled
by the time elapsed since the previous point. If the speed
exceeds a threshold v (three times the maximum speed limit of
the road segment), the backward movement is implausible. In
this case, the algorithm adds the previously matched candidate
point m,. to the current candidate set and calculates proba-
bilities together with the current unrealistic candidate, thereby
enhancing the robustness of the algorithm (Lines 4-5).

B. Probability Calculation

This section first reviews the traditional method of HMM
probability calculation and discusses its limitations, and then
proposes two optimizations to address these limitations.
Traditional HMM Probability Calculation. The classical
HMM probability calculation method has demonstrated good
accuracy, particularly with low sampling interval data. There-
fore, this paper is based on the traditional approach, which
consists of two main components: observation probability
calculation and transition probability calculation.

(1) Observation Probability Calculation. This step quanti-
fies the likelihood that the observed position data aligns with
potential positions on the map. The observation probability
P(ct i|pt), where p, represents the observed location at time ¢
and ¢, ; is the candidate map-matched position, measures the
likelihood that the observed data corresponds to a particular
map position. This calculation is essential for mitigating noisy
GPS signals and improving the accuracy of matching observed
data to the actual map path, as has been proven effective in
prior research [18]. The observation probability is defined as:

1 dg(pt, i)
——exp | -2t
V2mo? 202
where o represents the standard deviation of the observation
noise, with a default value of 5 based on the previous
research [28]. dg(p:,ct,) represents the Euclidean distance
between p; and c¢; ;.

P(eilp) = (1)

on
o O Previous GPS Point
)2 @ Current GPS Point
O Candidate Point

Fig. 4. Illustration of Transition Probability Calculation for a New GPS Point.

(2) Transition Probability Calculation. This step estimates
the likelihood of transitioning between consecutive candidate
points. Denoted as P(ct|c;—1), it represents the likelihood
of moving from candidate point c¢;_; at one timestamp to
candidate point c; at the next. This step ensures that the
inferred trajectory adheres to physical constraints and realistic
travel patterns. The transition probability is expressed as:

1
P(erilei—1,;) = Be*df/ﬁ 2)

where [denotes the scale parameter, set to 5 based on
the prior research [28]. d; represents the absolute difference
between the Euclidean distance of the observed points and the
corresponding path distance on the map, defined as follows:

dy = |dE(Pt’Pt71) - dpath(ct,i»ctfl,j” 3)

where dpqun(cy i, ci—1,;) represents the distance on the road.
A smaller value of d; results in a higher transition probability,

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

indicating that the model prefers transitions that closely align
with both the observed distances and path-inferred distances,
thereby ensuring realistic trajectory alignment. As illustrated
in Fig. 4, d; and ds are two path distances of two pairs of
candidates respectively, and dy is the Euclidean distance of
the observed points. Since |dy — d1| < |do — d2|, c3,1 and ¢4 1
show higher transition probability than cg o and c4 2.
Limitations of Traditional Methods. Although traditional
HMM methods have demonstrated effectiveness in many sce-
narios, they encounter significant challenges, particularly in
real-time applications involving streaming data. These chal-
lenges primarily stem from computational inefficiency and a
lack of adaptability to dynamic environmental changes.

(1) Computational Inefficiency in Transition Probability
Calculation. The traditional approach to calculating transition
probabilities relies heavily on the single-source Dijkstra algo-
rithm, which is computationally expensive. In streaming data
scenarios, recalculating the shortest path for every consecutive
pair of candidates leads to redundancy, especially when the
points are temporally and spatially close. This redundancy
results in unnecessary computational overhead.

(2) Inability to Adapt to Dynamic Environmental Changes.
Traditional methods typically use fixed weights for observation
and transition probabilities, which do not account for the
dynamic nature of real-world environments. For instance,
when a vehicle transitions from an open area to an urban
environment with tall buildings, GPS signal quality may
degrade significantly, leading to data errors. In such cases,
the observation probability should be adjusted to reflect the
reduced reliability of the GPS data. However, traditional
methods fail to accommodate these variations, resulting in
suboptimal performance under changing conditions.

Optimization Strategies. To address the limitations outlined
above, we propose two optimization strategies: an efficient
method for calculating transition probabilities using a bidirec-
tional Dijkstra algorithm with a step-level shortest path cache,
and a dynamic parameter adjustment mechanism that adapts
to changing environmental conditions.

(1) Transition Probability Calculation with Step-Level
Cache. In Equ. (3), the path distance dp.n requires frequent
shortest path queries between candidate sets of adjacent time
steps. However, due to the spatial and temporal continuity
of trajectories, GPS points at nearby time steps often yield
overlapping or closely located candidates. This results in
repeated queries for the same or similar candidate pairs across
multiple steps, causing redundant computations.

To mitigate this inefficiency, we propose a step-level cache
that stores shortest path results for candidate pairs computed
in recent steps. When a previously encountered pair reappears,
the cached result is directly reused, avoiding recomputation.
The cache maintains shortest path results within an appropriate
number of recent time steps, determined by a trade-off between
computational efficiency and memory overhead. The default
cache step for caching shortest path is 5. Additionally, we
employ a bidirectional Dijkstra algorithm [29] to accelerate
shortest path queries by reducing the search space from both
ends, which is particularly effective for computing shortest

paths between candidate sets in continuous matching, signifi-
cantly improving efficiency while maintaining accuracy.

(2) Dynamic Parameter Adjustment. Traditional map match-
ing methods often use fixed weights to combine observation
and transition probabilities, i.e.,

Selcti) = wop 1og P(cyi|p) + wer log Pcrilci—1,5) (4)

where wop, wy € [0,1] are fixed weights satisfying w,p +
wy = 1, used to balance the the observation probability and
the transition probability. However, using static weights across
all time steps fails to reflect their varying importance under
different conditions. However, such weights cannot adapt to
environmental variability, such as GPS noise in urban canyons
or irregular driving patterns.

To address this, we propose to dynamically adjust the
relative importance of observation and transition terms. At
each time step ¢, we define the loss function as:

L=— Z (wf)b log P(c¢|pt) + wi, log P(ct|ct_1)) 5)
n
where n is the number of candidate points at time step t,
and w!, and w, are respectively the weights of observation
and transition probabilities at time step ¢ (we set w?, =
wy. = 0.5). This loss represents the negative total score of
all candidates under the current weights. Minimizing it means
maximizing the overall candidate scores, which encourages
the model to favor configurations that better highlight the true
matched points.
The weights w!, and w}, are updated via gradient descent
and then normalized, where o = 0.01 is the learning rate:

why, = wh ' +a) log Pcpr) 6)
wy, = wi, 4 aZlog P(etler—1) (7N

wly, = wlhy/(wh, + wy,), wi, = wy, /(wh, +w},) (8)

The loss function L is linear with respect to wg, and wy,,
implying convexity. Therefore, with a fixed and sufficiently
small learning rate «, the gradient descent process is guaran-
teed to converge to a global minimum. Since the update only
involves simple accumulation of log-probabilities at each step,
the adjustment process has a constant time complexity of O(1)
and is well-suited for streaming scenarios.

C. Streaming Inference

The Streaming Inference module is responsible for pro-
cessing incoming GPS data in real-time and generating the
final matched path. Although our proposed method is also
based on the online Viterbi algorithm, it differs from existing
approaches that use a sliding window for backtracking calcu-
lations and output results only when convergence conditions
are met. In contrast, our method calculates the probability
for each new point in real-time and immediately outputs the
corresponding matched point.

Candidates Matching Score Calculation. The first step
in streaming inference is to calculate matching scores for

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

~ @ key candidate
. Cs3 (O compressed candidate

candidates B

current time

previous time

Fig. 5. An Example of the State Tree Used for Rollback Verification.

candidate points. For each incoming GPS point, candidate
points are evaluated based on the observation and transition
probabilities. These scores determine how well each candidate
aligns with the GPS data. A composite matching score is
then assigned to each candidate point using Equ. (4) but with
dynamic weights.

Online Viterbi Inference. The second step involves online
Viterbi inference [30], utilizing a state tree as illustrated in
Fig. 5 to identify the most probable candidate point at the
current time step. The online Viterbi algorithm is particularly
effective for real-time streaming data, continuously updating
the sequence of states to maximize the overall matching
probability as new GPS data arrives. By maintaining this state
tree, the algorithm efficiently identifies the candidate point
with the highest matching probability at each step, based
on the previous matching scores. Thus, the most probable
candidate point for time step ¢ is determined, allowing the
algorithm to generate matched point in real time without the
need for a complete history of all GPS data. The max path
score S(P,, ;) of the candidate point c; ; is defined as:

S(Pe,,) = mazjec,_, (Sc(cti) + S(Pj)) ©)

We select the candidate point with the highest path score
from the current candidate set C; as the matching point m;.

As illustrated in Fig. 5, we compute the score for each

candidate point at time step ¢ by utilizing the candidate points
from the previous time step ¢t — 1, following Equ. (9). For each
candidate at time ¢, the optimal connection is established by
selecting the candidate from ¢t—1 that yields the maximum path
score. For instance, to determine the probability of cg 1, we
compare it with ¢z 1 and c7 2, selecting the one that maximizes
the resulting path score as its parent. Consequently, cg 1 is
linked as the child node of the optimal candidate point c7 2
from t7. Finally, among cg 1, cg 2, and cg 3, we identify cg 1
as the matched point mg by selecting the one with the highest
cumulative path score.
Rollback Verification. This step is to refine short-term match-
ing accuracy and compensate for the myopic nature of online
inference. This technique leverages the state tree structure
preserved by online Viterbi inference and enables retrospective
corrections within a bounded sliding window of size L.

(1) Key Candidate Points. Rollback is founded on the con-
cept of key candidate points, defined as the nearest common
ancestor (NCA) among all current candidate nodes in the
state tree [30]. These key candidate points act as intermediate
points that segment the final matching sequence into reliable
subpaths. As shown in Fig. 5, candidates c7; and c7 at
time step t; share a common ancestor k7, which is marked

Algorithm 2: Sliding Window Backtracking

Input: State tree 7', window size L, current time step ¢,
original matched path P, current matched path P
Output: Updated matched path Prew
1 verifyKeyCandidatePoint(T".kpre, T-keur);
2 foreach candidate point ¢’ in P’ do
3 L ift — L <c.t <t then

!

4 | Update ¢ in P with ¢’ in P';

5 return P as Prew;

as the key candidate. The matched subpath between two
consecutive key candidate points is a part of the final matching
sequence, thereby enabling facilitating consistent backtracking
and efficient compression.

(2) State Tree Compression. The state tree maintains mul-
tiple candidate points at each time step to enable dynamic
programming during Viterbi inference. However, only a single
candidate from each time step will eventually be included
in the final matching sequence. All other candidates are
considered redundant once inference at that step is complete.
To eliminate this unnecessary overhead, we introduce two
compression mechanisms that significantly reduce the size
of the state tree while preserving its rollback functionality:
1) Prune Redundant Leaf Nodes. Candidates with no child
nodes are regarded as non-contributing to any possible future
path and are deleted directly from the tree. 2) Bypass Unary
Nodes. Candidates with only one child node are considered
compressible. Their parent and child nodes are connected
directly, bypassing the unary node. The bypassed node can
be removed to further reduce memory usage.

For example, as shown in Fig. 5, dashed circles represent
deleted candidates. At time step tg, only 4 candidate points
remain in the state tree: c72,¢g 1, 8,2, ¢g,3. All other nodes
have been removed via compression. Among the retained
nodes, those with exactly one child (e.g., ¢4 3) are labeled as
compressed candidates, indicating they have been structurally
bypassed by their children during tree simplification. Com-
pression is executed immediately after each round of Viterbi
inference. Because this process is applied to a small and
localized portion of the state tree, it incurs negligible overhead.
Moreover, by maintaining a compact tree structure, compres-
sion accelerates subsequent steps, including the identification
of key candidate points and the rollback verification process.

(3) Backtrack with Sliding Window. Backtrack operates
continuously at each time step. When a new key candidate k.,
is identified, the algorithm locates the previous key candidate
kprev. The earlier path is repalced by optimal path segment
between K., and kpr.,. To prevent unbounded delay and
memory growth, we restrict rollback to a sliding window
of length L. If kp, is no longer within the window, we
backtrack from k., to the earliest retained node. Otherwise,
we rollback directly between k., and kj..,. The complete
process is formalized in Algorithm 2.

Generating Matching Results. The final step in the Streaming
Inference module is generating the matching results. Once
rollback verification is complete and the optimal matching
sequence is determined, the algorithm generates the final

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

matching results. If no rollback occurs, the result is classified
as extending (i.e., the path continues without significant
corrections). If rollback is performed, the result is classified
as changing (i.e., the path undergoes significant revisions).

Regardless of the result type, EAR-MM ensures consistent
per-point processing complexity. In the candidate preparation
stage, spatial indexing enables candidate search in O(logk)
time, where k is the number of road segments. The probability
computation stage, which involves observation and transition
calculations over candidate sets of size m and n, has a time
complexity of O(logmn). This is the main computational
bottleneck, but is mitigated by a caching mechanism that
reuses previously computed shortest paths to reduce overhead.

In the streaming inference stage, EAR-MM applies an
online Viterbi algorithm with a compact state tree to maintain
optimal paths. Only partial results are emitted at merge points,
achieving O(n) time per step and significantly lower memory
usage than the standard O(T'n). The backtracking mechanism,
triggered only when necessary, adds minimal latency.

Overall, the per-point cost is mainly influenced by the
candidate set size across two steps, making EAR-MM efficient
and scalable for real-time scenarios.

VI. EXPERIMENTS
A. Datasets and Experimental Settings

Datasets. To evaluate the proposed method, we use two taxi
trajectory datasets and two road network datasets. The key
statistics of trajectory datasets are summarized in Table 1.

TABLE I
SUMMARY OF DATASETS

Property CD-Taxi WX-Taxi
Objects 2940 653

Trajectories 48,223 3,673
Sampling Interval | 3.13s 2.45s

(30.65°N, 104.04°E) —| (12.15°N, 40.68°E) —

Spatial C
patial LOVEIAEE | (30.73°N, 104.13°E) | (76.78°N, 129.76°E)

Time Span 2018/10/01 - 2020/07/18 -
P 2018/10/10 2020/07/24
Disk Size 18.2GB 1.56GB

e Chengdu Taxi Dataset (CD-Taxi): This dataset contains
48,223 trajectories collected over 10 days from October 1
to October 10, 2018, by 2940 taxis in Chengdu, China. The
spatial coverage ranges from (30.65°N, 104.04°E) to (30.73°N,
104.13°E), with an average sampling interval of 3.13 seconds.

e Wuxi Taxi Dataset (WX-Taxi): This dataset includes
3,673 trajectories recorded by 653 taxis in Wuxi, China, over
a week-long period from July 18 to July 24, 2020. The average
sampling interval is 2.45 seconds. This dataset is available?.

e Road Network Dataset: We extract the corresponding
road networks from OpenStreetMap, comprising 245,577 road
segments in Chengdu and 91,270 road segments in Wuxi. This
dataset is available®.

Zhttps://www.nbsdc.cn/general/dataSetHome
3https://www.openstreetmap.org/

We randomly select 2,000 trajectories from each dataset
for the experiments. Trajectories are split if the time gap
between consecutive points exceeds one hour. To simulate
different sampling intervals, we down sample the GPS points
by selecting them at regular intervals. For example, to simulate
a 10-second interval from a dataset with a 2-second interval,
we select every fifth point.

To evaluate the EAR-MM method, we generate ground truth
paths using the approach from [13], [31], [32]. Specifically,
we align high-frequency trajectories to the road network using
the HMM map-matching algorithm [28], treating the matched
results as the ground truth paths.

Parameters. We evaluate the model stability by varying the
sampling interval I from 2 to 60 seconds, with a default value
of 6 seconds. For backtracking analysis, the window size L is
increased from 5 to 25 in 5 steps, with a default value of 20.
Additionally, the weight parameter w is evaluated using five
values: 0.3, 0.4, 0.5, 0.6, and 0.7, with a default value of 0.5,
and compared with our automatic parameter tuning.

Metrics. The metrics include the average match time (AMT)
and the accuracy (ACC):

ZTmatch
AMT = =——— (10)
Ntraj
ACC = M an
Ntotal

where T}, q:ch, is the match time for each trajectory, Ny.q; is
the number of trajectories, Norrect 1S the number of correctly
matched points, and Ny, is the total number of points.
Baselines. We compare EAR-MM against four representa-
tive HMM-based map matching algorithms: OHMM [18],
AMM [16], AOMM [27], and DW-RMM [15]. For a fair
comparison in streaming scenarios, we implement streaming-
compatible versions of all baselines and carefully tune their
parameters for optimal performance. We do not include deep
learning-based methods like [25] and [24], as they typically
require full trajectories and offline training, making them
unsuitable for real-time streaming scenarios.

e OHMM [18] is a classic HMM-based approach that
introduces a variable sliding window and implements the
online Viterbi algorithm. This allows the method to output
partial matching results when a convergence point appears
along the path.

e AMM [16] establishes a collaborative evaluation model
for GPS points and candidate road segments. It filters low-
quality GPS points, assigns different feature weights to adapt
to various traffic environments, and introduces a backtracking
correction mechanism to enhance matching accuracy.

e AOMM [27] is an HMM-based method that provides
three adjustment strategies to address issues such as trajectory
noise, dense trajectory points, and offset trajectory points.

e DW-RMM [15] uses dynamic weights to select the best
matching road segment for each GPS point based on four
criteria: distance, heading difference, direction difference, and
road connectivity. It then calculates the confidence of the
candidate segment. If the confidence is below a threshold, the
road segment matched in the previous time step is retained.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

>

OHMM =1 DW-RMM =
AMM == EAR-MM ==
AOMM =1

OHMM EXI1 DW-RMM >
AMM =2 EAR-MM == | 70
AOMM £

o 2
S S
T T

%
<)
T

Accuracy(%)

=
=)
T

1

W s

<
T

::

[

CD-Taxi WX-Taxi
(b) AMT

[=)
=]

CD-Taxi WX-Taxi
(a) ACC

Fig. 6. Overall Comparison with Baselines.

Settings. All experiments are conducted on a server running
Ubuntu 22.04, equipped with a TS80X E-2224G CPU, 128GB
RAM, and dual 2TB hard disks. We use Kafka to simulate
streaming data input for real-time processing. All methods are
implemented in Java using JDK 1.8.

B. Overall Performance

Fig. 6 presents the comparative performance of our method
against four alternative methods across two datasets, CD-Taxi
and WX-Taxi. Our method, EAR-MM, consistently achieves
superior performance in both accuracy and match time. Specif-
ically, compared to AOMM on the two datasets, EAR-MM
requires only 0.61% and 0.56% of the processing time of
AOMM while achieving accuracy improvements of 8.87% and
4.03%, respectively.

In terms of accuracy, EAR-MM outperforms AOMM and
AMM with significant improvements. The accuracy gain is
particularly evident on the CD-Taxi dataset, where EAR-MM
achieves the highest accuracy compared to all baselines. This
performance boost is largely attributed to the candidate reuse
and rollback verification mechanisms. Regarding match time,
EAR-MM shows remarkable efficiency, requiring significantly
less time than AOMM and AMM. The reduced match time is
primarily due to the use of the bidirectional Dijkstra algorithm
and cache calculation techniques, which speed up the process
without sacrificing accuracy.

Additionally, EAR-MM maintains stable performance
across both datasets, demonstrating its robustness. This sta-
bility can be attributed to the automatic parameter adjustment
mechanism, which ensures that the method performs optimally
across diverse operational contexts.

C. Parameter Analysis in Performance

Sampling Interval /. The sampling interval plays a crucial
role in the performance of map matching. As shown in Fig. 7,
increasing the time interval between GPS points leads to
lower accuracy and typically shorter match times. As the
sampling interval increases, accuracy drops due to larger gaps
between trajectory points, but EAR-MM consistently achieves
the highest accuracy with the smallest decline.

In terms of match time, while most methods see a slight
reduction in time as the sampling interval increases, AOMM
shows fluctuations, with match time initially increasing and
then decreasing. This suggests that AOMM faces computa-
tional bottlenecks at specific sampling intervals. In contrast,
EAR-MM maintains a stable, low match time without such

110" OHMM —— DW-RMM] HOF " OHMM —— DW-RMM
< AMM —— EAR-MM —— s AMM —— EAR-MM ——
RI0F AoMM 1 S100F - AomMm 1
90 [1 R —
§ - ? 90 |- ==
) e —
§ e éso— E
3 70 E 3 e
< 60} 1 < 70 1
50l . ; 60 . :
36 12 30 48 60 26 12 30 18 60

Sampling Interval (s) Sampling Interval (s)

(a) CD-Taxi (b) WX-Taxi
—~100] OHMM — DW-RMM —~ | ~70F * OHMM —— DW-RMM = 1
g AMM —— EAR-MM =~ 60l AMM — EARMM - -
E 80F AOMM 1 Sl AoMM]
[[
E 60f 1 E4of 1
= =301 1

40 1
5 R 1
S 0 — L) S
i = — = opi ; —

36 12 30 48 60 26 12 30 48 60
Sampling Interval (s) Sampling Interval (s)
(¢) CD-Taxi (d) WX-Taxi
Fig. 7. Performance with Different Sampling Intervals.

96 T T T . T
o5t CD-Taxi ++ | =7 CD-Taxi ——
e WX-Taxi = WX-Taxi_—

94 | X o6 X N
=N e — & - .
93l 4 25 e
g; 92t ++* g E 4 _F N
< 91 F— B < 3 |

90 Il Il Il L Il Il Il

5 10 15 20 25 5 10 15 20 25
Window Size Window Size
(a) ACC (b) ABL
Fig. 8. Performance with Different Window Sizes.

fluctuations on both datasets, which demonstrates its robust-
ness across different sampling intervals.

Window Size L. The window size determines the temporal
scope for backtracking, focusing on recent points to improve
the efficiency. To assess how the window size affects back-
tracking performance, we introduce the Average Backtracking
Latency (ABL), which quantifies the average time difference
between the correct backtracking point and the current match-
ing point, normalized by the sampling interval I:

Z(TSCOT'TGCth - TS’match)
I x Ncorrected

ABL = (12)
Here, T'Scorrected Tepresents the timestamp of the corrected
candidate points, T'Sy,qtcn denotes the timestamp of the cur-
rent matching point, and Neorrecteq 1S the total number of
corrected candidate points.

As illustrated in Fig. 8(a)-(b), an increase in the window
size improves matching accuracy, but also increases ABL. This
occurs because larger windows incorporate more candidate
points, thereby providing a broader set of potential backtrack-
ing points and increasing the time required for backtracking.
Weight Parameter w. As shown in Fig. 9(c), our method’s au-
tomatic parameter adjustment mechanism (auto) significantly
improves accuracy over fixed weights (e.g., 0.3, 0.4, 0.5)
across both CD-Taxi and WX-Taxi datasets. This mechanism

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

100 ~0.6 b 3 d p
<98 N L 3 03 0.6 03|
> 32 i Eos 04 = 07 &
> 50-4’ 0.5 B auto &
g 9 1 =03} T i
= | 1| == ke
5 92 <02f .

Q | a o P
o 90 o1t ® |
< 88} \ \ =he 5N \
CD-Taxi WX-Taxi 0 CD-Taxi WX-Taxi
Weight Weight
(a) ACC (b) AMT
Fig. 9. Performance with Different Different Weights.

is particularly beneficial in complex traffic environments,
where it allows the model to adapt in real time, improving
accuracy even under changing conditions.

Furthermore, as shown in Fig. 9(d), the automatic ad-
justment has little effect on match time. Both on CD-Taxi
and WX-Taxi datasets, match time remains stable, meaning
the adjustment improves accuracy without adding significant
computational cost. Thus, the use of automatically adjusted
weight parameters is ideal for real-time and high-precision
applications.

D. Ablation Study on Model Components

Fig. 10(a) and Fig. 10(b) present the ablation study results,
illustrating the contributions of each EAR-MM component to
accuracy and match time. The cached bidirectional Dijkstra al-
gorithm primarily enhances efficiency by accelerating shortest-
path computations. In terms of accuracy, candidate reusing
is particularly effective under high GPS noise (e.g., in the
CD-Taxi dataset) by filtering loop paths and producing more
stable matched paths. Dynamic parameter adjustment further
improves accuracy by adaptively tuning the balance between
observation and transition probabilities in complex environ-
ments. In addition, as shown in Table II, the backtracking
mechanism enhances robustness by enabling efficient rollbacks
to real match result when key candidate is found. Leveraging
the state tree structure, it supports multiple backtracking op-
erations with minimal overhead. Specifically, the backtracking
strategy improve the accuracy of 1.29% and 1.32% but with
only match time increment of 0.01s and 0.02s per trajectory
on CD-Taxi and WX-Taxi, respectively.

Moreover, we analyze how each component responds to
varying sampling intervals. As shown in Fig. 10(c)-(d), all
variants experience accuracy declines as the sampling interval
increases, with sharper declines from 3s to 6s, indicating that
component effectiveness relies more on low sample-interval
trajectories, making them well suited for streaming scenarios.
The dominant component also varies: at 3s, candidate reusing
is the most impactful in CD-Taxi, while dynamic parameter
adjustment leads in WX-Taxi. Within a single dataset, their
influence shifts with sampling intervals. For instance, in CD-
Taxi, candidate reusing is more effective at lower intervals,
whereas backtracking helps more at higher intervals. These
results demonstrate that the components complement each
other, enabling EAR-MM to adapt across diverse conditions.

9
TABLE II
STATISTICS OF BACKTRACKING
Statistic Results CD-Taxi WX-Taxi
Times of Backtracking 4,929 653
No. of Backtracking Points 10,736 3,673
Match Time Increment 0.01s 0.02s
Accuracy Improvement 2.42% 0.98%
110 -
AR-MM 53 161 EAR-MM X1 -
EAR-MM -AutoWeight B3 Alat EAR-MM -AutoWeight Ez3
<105 EAR-MM -Reusing =1 | €l EAR-MM -Reusing =3 |
S EAR-MM -BiDijkstra == = EAR-MM -BiDijkstra £
100 F EAR-MM -Backtracking =1 { EIO F EAR-MM -Backtracking ==
g = 8l i
o =
a 95 = 6fF i
13} 24l i
< =
90 S ol |
85 o S 5 o N 5 N
CD-Taxi WX-Taxi
(a) ACC (b) AMT
96 : T 98 : T
oat EAR-MM | EAR-MM
S04 EAR-MM -AutoWeight 3971 EAR-MM -AutoWeight 1
SKX EAR-MM Reusing = 1 &5 EAR-MM -Reusing |
>90: & EAR-MM -Backtracking —¢— > EAR-MM -Backtracking —¢—
§ 88 |- E § 951
586 1 So4t
Q Q
Q84 <QC) 03k
82| 1
92t 3
g0 Lo L : L L L
36 12 30 48 60 26 12 30 48 60

Sampling Interval (s) Sampling Interval (s)

(c) CD-Taxi (d) WX-Taxi

Fig. 10. Ablation Performance.

E. Memory Analysis

We conduct memory analysis experiments using WX-Taxi
as an example. Fig. 11(a) illustrates the effect of compression
and deletion operations on memory usage during rollback ver-
ification. The results demonstrate that both compression and
deletion significantly reduce memory consumption throughout
the entire matching process. Specifically, compared to tradi-
tional rollback verification methods, applying the compression
and deletion strategies results in a much slower increase in
memory usage, particularly during long-running operations.
By deleting unnecessary candidate point data and compress-
ing historical states, memory consumption is effectively con-
trolled, thus reducing pressure on system resources.

Fig. 11(b) examines the impact of cache step size in the
BiDijkstra algorithm on memory usage and matching time. A
cache step of 0 indicates no caching of shortest paths between
candidate points. As the cache step increases from 0 to 35,
the memory usage grows linearly from 27.31KB to 60.59KB
due to the expanded cache. Matching time initially decreases
(cache step < 10) as redundant shortest path computations
are avoided, but increases slightly beyond that point (cache
step > 10). This is because shortest paths between temporally
distant candidates are less likely to be reused, while the cache
maintenance overhead increases.

F. Case Study

Fig. 12 and Fig. 13 compare the path matching performance
of EAR-MM with several other algorithms. In intersection

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

200 T T T T T 75 ——— |
Rollback -Compress&Delete — 70 - Memory = 09
175 - Rollback — 7 65 Match Time e
~
m 150 - N 4 L
Zios | N A b
Y4 - L
T) SN e (AP [
g 751 \ /mw’/ 1 F
5} Y L
S s0f/ g i
251/ J I
.
0750 090 120 150 180 0 5 10 15 20 25 30 35
Timestep Cache Step
(a) Memory (b) BiDijkstra

Fig. 11. Memory Performance.

47
g
o =

S

&
— A P AN
- o

,4 /’ 0. v
/ . — AMM .
/e ‘

Fig. 12. The Case of the Intersection.

ekl

scenarios (Fig. 12), frequent turns and closely spaced branches
often cause GPS points near junctions to be misaligned. Tradi-
tional methods like OHMM, DW-RMM, and AOMM tend to
incorrectly match to a nearby side road instead of the correct
through path, especially when the deviation seems locally
optimal. AMM alleviates this issue to some extent by filtering
out low-confidence points, but still lacks robustness in such
situations. In contrast, EAR-MM addresses these challenges
through adaptive parameter optimization and backtracking,
minimizing the impact of offset points and avoiding unnec-
essary detours for better accuracy and robustness. In cases of
traffic jam on parallel roads (Fig. 13), prolonged stops or slow
movements often introduce GPS drift, which can resemble
potential backward movements. This misleads algorithms into
generating loop matches or switching to adjacent parallel
roads. OHMM, DW-RMM, AOMM, and AMM frequently
fall into such errors due to their lack of temporal consis-
tency checks. EAR-MM, however, maintains high reliability
by reusing previous candidates, allowing it to suppress false
backward transitions and avoid forming incorrect loops.

VII. CONCLUSION

This work introduces EAR-MM, an efficient, adaptive and
robust streaming map matching algorithm that uses an online
Viterbi algorithm for real-time matched point generation.
EAR-MM enhances robustness through candidate reuse and
rollback verification, while dynamic parameter adjustment
ensures adaptability to changing road conditions. With bidi-
rectional Dijkstra and step-level caching, EAR-MM signifi-
cantly reduces processing time. Extensive experiments show
that EAR-MM achieves only 0.61% and 0.56% of AOMM’s

Fig. 13. The Case of Parallel Road Congestion.

processing time on two datasets, with accuracy gains of 8.87%
and 4.03%, respectively. Future work will focus on enhancing
scalability through parallelization.

REFERENCES

[1] R. Li, H. He, R. Wang, S. Ruan, T. He, J. Bao, J. Zhang, L. Hong,
and Y. Zheng, “Trajmesa: A distributed nosql-based trajectory data
management system,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 1, pp. 1013-1027, 2023.

[2] R.Li, Z.Li, Y. Wu, C. Chen, and Y. Zheng, “Elf: Erasing-based lossless
floating-point compression,” Proceedings of the VLDB Endowment,
vol. 16, no. 7, pp. 1763-1776, 2023.

[3] W. Gao, G. Li, and TAna, “Survey of map matching algorithms,” Journal
of Software, vol. 29, no. 2, pp. 225-250, 2017.

[4] K. Nagai, M. Spenko, R. Henderson, and B. Pervan, “Fault-free integrity
of urban driverless vehicle navigation with multi-sensor integration: A
case study in downtown chicago,” NAVIGATION: Journal of the Institute
of Navigation, vol. 71, no. 1, 2024,

[51 Y. Sun, F. Meng, R. Li, Y. Tang, C. Chen, and J. Zhong, “Streaming
trajectory segmentation based on stay-point detection,” in International
Conference on Database Systems for Advanced Applications. Springer,
2024, pp. 203-213.

[6] L. Zhou, J. Shi, and D. Yang, “Vehicle positioning monitoring system
based on gps/bds dual-mode positioning technology,” in 2024 IEEE 4th
International Conference on Electronic Technology, Communication and
Information (ICETCI). 1EEE, 2024, pp. 704-710.

[7]1 H. Manjunath and R. Mulangi, “Spatio-temporal analysis of public
transit gps data: application to traffic congestion evaluation.” Advances
in Transportation Studies, vol. 62, 2024,

[8] L. Peng, X. Liao, T. Li, X. Guo, and X. Wang, “An overview based
on the overall architecture of traffic forecasting,” Data Science and
Engineering, vol. 9, no. 3, pp. 341-359, 2024.

[91 A. R. M. Forkan, Y.-B. Kang, F. Marti, A. Banerjee, C. McCarthy,

H. Ghaderi, B. Costa, A. Dawod, D. Georgakopolous, and P. P. Jayara-

man, “Aiot-citysense: Ai and iot-driven city-scale sensing for roadside

infrastructure maintenance,” Data Science and Engineering, vol. 9, no. 1,

pp. 2640, 2024.

W. Wang, Q. Yu, R. Duan, Q. Jin, X. Deng, and C. Chen, “Low-

frequency trajectory map-matching method based on probability inter-

polation,” TIG, 2024.

C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating

hidden markov model with precomputation,” International Journal of

Geographical Information Science, vol. 32, no. 3, pp. 547-570, 2018.

R. Li, H. Zhu, R. Wang, C. Chen, and Y. Zheng, “Fast and distributed

map-matching based on contraction hierarchies,” Journal of Computer

Research and Development, vol. 59, no. 2, pp. 342-361, 2022.

L. Jiang, C.-X. Chen, and C. Chen, “L2mm: learning to map matching

with deep models for low-quality gps trajectory data,” ACM Transactions

on Knowledge Discovery from Data, vol. 17, no. 3, pp. 1-25, 2023.

R. Li, H. He, R. Wang, Y. Huang, J. Liu, S. Ruan, T. He, J. Bao, and

Y. Zheng, “Just: Jd urban spatio-temporal data engine,” in 2020 IEEE

36th International Conference on Data Engineering (ICDE). 1EEE,

2020, pp. 1558-1569.

[10]

[11]

(12]

[13]

[14]

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

(31]

(32]

M. He, L. Zheng, W. Cao, J. Huang, X. Liu, and W. Liu, “An enhanced
weight-based real-time map matching algorithm for complex urban
networks,” Physica A: Statistical Mechanics and its Applications, vol.
534, p. 122318, 2019.

H. Hu, S. Qian, J. Ouyang, J. Cao, H. Han, J. Wang, and Y. Chen, “Amm:
an adaptive online map matching algorithm,” TITS, vol. 24, no. 5, pp.
5039-5051, 2023.

H. Qi, Z. Huang, Y. Chen, Y. Zhang, and Y. Gao, “Streamlining
trajectory map-matching: a framework leveraging spark and gpu-based
stream processing,” International Journal of Geographical Information
Science, vol. 38, no. 6, pp. 1158-1178, 2024.

C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet,
“Online map-matching based on hidden markov model for real-time
traffic sensing applications,” in 2012 15th ITSC. IEEE, 2012, pp. 776~
781.

C. Chen, Y. Ding, X. Xie, and S. Zhang, “A three-stage online map-
matching algorithm by fully using vehicle heading direction,” Journal
of Ambient Intelligence and Humanized Computing, vol. 9, no. 5, pp.
1623-1633, 2018.

Z. Liu, Y. Zhou, X. Liu, H. Zhang, Y. Dong, D. Lu, and K. Wu,
“Learning road network index structure for efficient map matching,”
TKDE, no. 01, pp. 1-15, 2024.

G. Wang and R. Zimmermann, “Eddy: An error-bounded delay-bounded
real-time map matching algorithm using hmm and online viterbi de-
coder,” in Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2014, pp.
33-42.

G. R. Jagadeesh and T. Srikanthan, “Online map-matching of noisy and
sparse location data with hidden markov and route choice models,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp.
2423-2434, 2017.

S. Ma and H. Lee, “A practical hmm-based map-matching method for
pedestrian navigation,” in 2023 International Conference on Information
Networking (ICOIN). 1EEE, 2023, pp. 806-811.

J. Feng, Y. Li, K. Zhao, Z. Xu, T. Xia, J. Zhang, and D. Jin, “Deepmm:
Deep learning based map matching with data augmentation,” [EEE
Transactions on Mobile Computing, vol. 21, no. 7, pp. 2372-2384, 2022.
Y. Liu, Q. Ge, W. Luo, Q. Huang, L. Zou, H. Wang, X. Li, and
C. Liu, “Graphmm: Graph-based vehicular map matching by leveraging
trajectory and road correlations,” IEEE Transactions on Knowledge and
Data Engineering, vol. 36, no. 1, pp. 184-198, 2024.

S. Taguchi, S. Koide, and T. Yoshimura, “Online map matching with
route prediction,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 20, no. 1, pp. 338-347, 2018.

W. Lv, Y. Chen, P. Shang, F. Zheng, and J. Wang, “A self-adjusting
online map matching method,” in Journal of Physics: Conference Series,
vol. 2006, no. 1. IOP Publishing, 2021, p. 012035.

P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in Proceedings of the 17th ACM SIGSPATIAL interna-
tional conference on advances in geographic information systems, 2009,
pp. 336-343.

R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in Experimental Algorithms: 7th International Workshop, WEA 2008
Provincetown, MA, USA, May 30-June 1, 2008 Proceedings 7. Springer,
2008, pp. 319-333.

R. Sramek, B. Brejov4, and T. Vinaf, “On-line viterbi algorithm for anal-
ysis of long biological sequences,” in Algorithms in Bioinformatics: 7th
International Workshop, WABI 2007, Philadelphia, PA, USA, September
8-9, 2007. Proceedings 7. Springer, 2007, pp. 240-251.

C. Chen, Q. Liu, X. Wang, C. Liao, and D. Zhang, “semi-traj2graph
identifying fine-grained driving style with gps trajectory data via multi-
task learning,” IEEE Transactions on Big Data, vol. 8, no. 6, pp. 1550—
1565, 2021.

K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing uncertainty of
low-sampling-rate trajectories,” in 2012 ICDE. IEEE, 2012, pp. 1144—
1155.

Yangyang Sun is currently a master student at the
School of Computer Science, Chongqing University.
His research direction is streaming spatiotemporal
data mining and management.

Tianyu Huang is currently a master student at the
School of Computer Science, Chongqing University.
His research direction is integrated streaming spa-
tiotemporal data management.

Zijian Zhang is currently an undergraduate student
at the School of Computer Science, Chongqing
University. His research direction is streaming spa-
tiotemporal data mining.

Ruiyuan Li is an associate professor with
Chongqing University, China. He is the director of
Start Lab (Spatio-Temporal Art Lab). He received
the B.E. and M.S. degrees from Wuhan University,
China in 2013 and 2016, respectively, and the Ph.D.
degree from Xidian University, China in 2020. He
was the Head of Spatio-Temporal Data Group in JD
Intelligent Cities Research, leading the research and
development of JUST (JD Urban Spatio-Temporal
data engine). Before joining JD, he had interned in
Microsoft Research Asia from 2014 to 2017. His

research focuses on Spatio-temporal Data Management and Urban Computing.

Chao Chen received the B.E. and M.S. degrees
from Northwestern Polytechnical University, Xi’an,
China, in 2007 and 2010, respectively, and the
Ph.D. degree from Pierre and Marie Curie University
and the Institut Mines-Télécom/Télécom SudParis,
France, in 2014. In 2009, he was a research assistant
with the Hong Kong Polytechnic University. He
is currently a full professor with the College of
Computer Science, Chongging University, China.
His research interests include pervasive computing,
mobile computing, urban logistics, data mining from

large-scale GPS trajectory data, and big data analytics for smart cities.

Yu Zheng is the Vice President of JD.COM and
president of JD Intelligent Cities Research. Before
Joining JD.COM, he was a senior research manager
at Microsoft Research. He is also a chair professor at
Shanghai Jiao Tong University. He was the Editor-in-
Chief of ACM Transactions on Intelligent Systems
and Technology and has served as the program co-
chair of ICDE 2014 and CIKM 2017. He is a keynote
speaker of AAAI 2019, KDD 2019 Plenary Keynote
Panel and IJCAI 2019 Industrial Days. He received
SIGKDD Test-of-Time Award twice (in 2023 and

2024). He was named one of the Top Innovators under 35 by MIT Technology
Review (TR35), an ACM Distinguished Scientist and an IEEE Fellow, for his
contributions to spatio-temporal data mining and urban computing.

