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DVCAE: Semi-Supervised Dual Variational Cascade
Autoencoders for Information Popularity Prediction
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Abstract—Predicting information popularity in social networks
has become a central focus of network analysis. While recent
advancements have been made, most existing approaches rely
solely on the final cascade size as the primary supervision
signal for model optimization. This narrow focus limits the
model generalization ability, particularly when faced with highly
heterogeneous cascades. Additionally, in real-world scenarios,
obtaining detailed social relationships is challenging, compli-
cating effective structural feature learning. To address these
issues, this paper proposes a semi-supervised model called Dual
Variational Cascade AutoEncoders (DVCAE), which leverages
parallel structural and temporal variational autoencoders for
enhanced feature learning and popularity prediction. The model
first aggregates multiple cascades into a global interaction graph,
enabling structural information sharing across cascades. Then,
it applies sparse matrix factorization-based graph embedding
and graph filtering techniques on global and local cascade
graphs respectively, generating initial node embeddings that
are insensitive to topological perturbations. After that, two
parallel variational autoencoders are designed to generate hidden
representations for structural and temporal features respectively,
with two self-supervised reconstruction losses integrated into
the prediction loss to enrich supervision signals. Extensive ex-
periments conducted on three real-world datasets demonstrate
that DVCAE outperforms state-of-the-art models in terms of
prediction accuracy.

Index Terms—Popularity prediction, Social network analysis,
Graph neural networks, Variational autoencoders.

I. INTRODUCTION

NOWADAYS, social media platforms such as Weibo,
Facebook, and Twitter, are playing an unprecedentedly

important role in our daily lives [1]. These platforms, which
generate huge amounts of data from minute to minute, have
greatly facilitated the dissemination of information, resulting
in problems such as information overload [2], fake news
spreading [3], etc. Information popularity prediction, which
refers to predicting the future popularity of a piece of message
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or news based on its content or early spreading dynamics, is
a hot research topic in the research community and has wide
applications such as viral marketing [4], content recommenda-
tion [5], fake news detection [6], etc. Take viral marketing for
example, accurately predicting future information popularity
can help decision makers discover potential hot products in
advance and make proactive marketing strategies. For social
media platforms, knowing which content will be popular in
the future is crucial for recommending high-quality material
to relevant users, enhancing user loyalty towards the platform.
For administrative department, timely monitoring of illegal
or harmful information, such as rumors or fake news that
would become popular in the future, could help authorities
take proactive measures to minimize potential impacts.

Motivation. Recent studies have shown that the effective
mining of structural and temporal features from the early
spreading dynamics (e.g., cascade graphs, sequential patterns)
provides a promising solution to ensure high prediction per-
formance [7]–[9]. However, current studies still face three
key challenges yet to be addressed. Challenge 1): Insufficient
structural feature extraction due to unavailability of underly-
ing social networks. With the increasing privacy concerns and
fast growing of social media users, it has become impractical
to access the entire underlying social networks, leading to
more difficulties in capturing structural features. Challenge
2): Low generalization capability of prediction models due
to cascade heterogeneity and limited supervision signals. On
the one hand, real-world cascades usually exhibit significant
heterogeneity and heavy-tailed distribution in terms of pop-
ularity [10]. On the other hand, most existing studies rely
solely on final popularity (cascade size) as the supervision
signal during model training. Consequently, they may shift
the model’s attention from learning the inherent structural
and temporal features, especially when extreme values exist
in the supervision signals [11], [12], leading to lower model
generalization capability. Challenge 3: Inefficiency in handling
large-scale cascade graphs. To allow different cascades to
collaboratively learn from each other, multiple cascades were
usually aggregated, resulting in a large-scale global interaction
graph [13], [14]. Therefore, how to efficiently handle such
large graphs remains a critical challenge.

Solution. To collectively address the above challenges,
this paper proposes a semi-supervised model called Dual
Variational Cascade AutoEncoders (DVCAE), which lever-
ages parallel variational autoencoders for more effective fea-
ture learning and popularity prediction. Specifically, we first
construct a large global interaction graph by connecting
multiple cascades through the common participants, allow-
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ing information sharing across heterogeneous cascades of
varying sizes, thus fully capturing the structural information
and largely alleviating the issue of cascade heterogeneity.
To efficiently handle the large-scale global interaction graph,
sparse matrix factorization-based graph embedding technique
is applied to obtain the global node embeddings with afford-
able computational costs. Meanwhile, graph filtering technique
is utilized on the local cascade graphs to generate local
node embeddings that are less sensitive to small topological
perturbations. After that, two parallel variational autoencoders,
one for structural learning (with GAT backbone) and the
other for temporal learning (with Bi-GRU backbone), are
employed to generate hidden representations for structural
and temporal node features, followed by respective pooling
mechanisms to produce the final cascade-level representations.
To further improve the model generalization capability, the
self-supervised reconstruction losses from both autoencoders,
i.e., the structure learning loss and the temporal learning loss,
are creatively integrated into the final popularity prediction
loss, thereby enriching the supervision signals for model opti-
mization. Extensive experiments on three real-world datasets
demonstrate the superior performance of DVCAE over the
state-of-the-art baselines in terms of prediction accuracy.

In summary, this paper makes the following contributions:
• We propose an autoencoder-based semi-supervised deep

learning model DVCAE, which employs dual autoen-
coders for enhanced structural and temporal feature learn-
ing without the need of the underlying social network.
Additionally, the sparse matrix factorization and graph
filtering techniques used in DVCAE allows both efficient
handling of large global interaction graph and effective
learning of local cascade graphs.

• We creatively integrate the reconstruction losses of the
structural and temporal variational autoencoders into the
popularity prediction loss. The simultaneous and collec-
tive optimization of the three losses allows our model
to learn more reliable structural and temporal features,
leading to higher generalization ability.

• We conduct extensive experiments on three public
datasets and compare DVCAE with 11 representative
baselines. The results show that DVCAE significantly
outperforms the state-of-the-art baselines in terms of
MSLE and MAPE. Ablation experiments further val-
idated the effectiveness of the modules designed in
DVCAE. Case studies reveal that DVCAE effectively
captures diverse propagation characteristics in complex
diffusion scenarios. The source code is publicly available
at: https://github.com/jxshang/DVCAE

The rest of this paper is organized as follows: Section
II gives a brief review of the related work on information
diffusion prediction. In Section III, we introduce the proposed
DVCAE model in detail, followed by experimental evaluation
in Section IV. In Section V, we conclude our work, discuss
its limitations and point out several future directions.

II. RELATED WORK

Currently, deep learning has become the mainstream tech-
nique for popularity prediction, so we briefly review the deep

learning-based methods from the following three aspects.

A. Methods based on Temporal Learning

These methods mainly focus on learning temporal fea-
tures for popularity prediction. Cao et al. [15] introduced
GRU, pooling mechanism and non-parametric time kernel into
Hawkes Process, thereby enhancing the interpretability of deep
“black-box” models. Wang et al. [16] introduced diffusion tree
to improve the LSTM network for feature learning. Yang et
al. [17] used RNN to model microscopic information diffusion
processes and transformed it into macroscopic cascade sizes,
adopting a reinforcement learning framework to update param-
eters. Attention mechanism [18] has also been widely used in
information diffusion modeling. Wang et al. [19] proposed
a RNN-based model with improved attention mechanism to
capture remote inter-dependencies in the information cascade.
Islam et al. [20] employed LSTM and attention mechanism
to generate content vector from the forwarding time stamp
information and node embedding vector for next forwarding
user and time prediction. Yang et al. [21] established a
cascade prediction model based on self-attention mechanism
and Convolutional Neural Network (CNN), which uses con-
volutional operators to alleviate the long-term dependence of
propagation sequences. Zhu et al. [22] proposed the Cross-
Domain Information Fusion Framework (CasCIFF), which ex-
ploits multi-hop neighborhood information to generate robust
cascade embeddings and incorporates timestamps to capture
the evolving patterns of information diffusion. Bao et al.
[9] comprehensively considered temporal dependencies on
dynamic diffusion process by simultaneously modeling the
temporal evolution in a separate snapshot and the inherent
temporal dependencies among different snapshots.

B. Methods based on Structural Learning

Structural learning-based methods mainly focus on learning
structural features for popularity prediction. Qiu et al. [23]
used the ego network of the target user as input data and
modeled the mutual influence of neighbor states with graph
convolutional and graph attention networks. Zhang et al. [24]
further improved the above model by generating egocentric
networks with a BFS strategy and learned structural features
using a spectral modulation method. Chen et al. [25] sampled
the cascade graph as a series of sequential subcascades and
used dynamic multi-direction GCN to learn the structure
information. All of the above models learn local topologies
on egocentric networks, while many recent studies learn
structures based on global graphs. For example, Cao et al.
[26] designed two parallel GNNs, one for simulating node state
and the other for simulating influence propagation, to deduce
the information diffusion process. Yuan et al. [27] proposed
DyHGCN which models user interactions by global social
diffusion graph, and models the change of user preference as
graph evolvements. Feng et al. [28] considered inter-cascade
correlation and proposed the DeepCon&DeepStr model, which
constructs high-level graphs between cascades based on their
similarity. Wang et al. [29] proposed a Multi-scale Context-
enhanced Dynamic Attention Network (MCDAN), which takes
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full advantage of user friendships and global cascading rela-
tionships to capture the global interactive relationships among
users.

C. Methods based on Structural and Temporal Learning

Structural and temporal learning-based methods address the
popularity prediction problem by comprehensively considering
structural and temporal features. Li et al. [30] proposed
DeepCas, which first uses the Random Walk algorithm to
sample multiple node sequences from the cascade graph,
and then employs Bidirectional Gated Recurrent Unit (Bi-
GRU) to learn temporal features. Chen et al. [31] used graph
attention network (GAT) and RNN to generate structural and
temporal representations respectively, and then integrated them
with attention mechanism for popularity prediction. Xu et
al. [32] used Graph Wavelet to learn the structural features
of cascade graphs and global graphs respectively as initial
vectors, followed by variational autoencoders to generate
corresponding hidden representations for diffusion prediction.
Yu et al. [33] used the self-attention mechanism in Trans-
former to extend the traditional Hawkes Process, enabling
the continuous sequence and topological structure learning in
the cascade graph. Considering the dynamic evolution of the
cascades, Wang et al. [34] divided the cascade into multiple
snapshots and used GCN to learn the representations of each
snapshot. Then they learned the weight of nodes based on
the dynamic routing algorithm, and finally used LSTM for
temporal learning. Chen et al. [35] developed a multi-scale
graph capsule network (MUG-Caps) with influence attention
mechanism to fully learn cascade graphs by considering the
influence at multiple scales. Sun et al. [36] improved the self-
attention mechanism of Transformer by using global spatio-
temporal position encoding and relative relation bias matrices
to capture different cascade relationships. Tai et al. [37] used
GNN and DeepWalk [38] to learn within-path and cross-path
influence transmission respectively. They then employed Bi-
LSTM and GRU with attention mechanism to learn the weights
for different structural representations. Ji et al. [39] proposed
a dynamic graph learning framework which updates the repre-
sentations based on newly observed user-message interactions,
and designed a community detection module to capture evolv-
ing community structures for popularity prediction. Zhu et al.
[8] improved the dynamic GNN with semantic information and
proposed specific attention mechanism based on the embedded
semantic information to mine the correlations between users
and content. Jin et al. [40] proposed a multi-layer temporal
GNN framework to learn the temporal representations of target
entities in each snapshot and predict their future popularity.

For models that emphasize temporal representations, a ma-
jor limitation is the insufficient attention given to structural
features, often leading to suboptimal prediction performance.
Conversely, models based on structural representations excel
at capturing structural features but typically overlook the tem-
poral dynamics in cascade graphs, and some struggle with the
efficiency of large-scale graph processing. To overcome these
limitations, recent approaches have integrated both structural
and temporal features. However, most of these models still

rely exclusively on final cascade size as the sole supervision
signal, which limits their generalization capability.

III. METHODOLOGY

A. Problem Definition

Given a message mi and the corresponding cascade graph
GCi constructed from the observation window (0, t], the infor-
mation popularity prediction task aims to train a model f(·; θ)
that maps (mi,GCi

) to the future increase in cascade size
during the prediction period (t, T ], i.e. f : (mi,GCi

) 7−→ ∆Pi,
where ∆Pi = |VT

i |− |Vt
i | represents the cascade size increase

and θ denotes the model parameter to be optimized.

B. Model Overview

The overall architecture of DVCAE is shown in Fig. 1,
which consists of the following four modules from bottom to
top: (a) Feature Preprocessing Module, which takes both the
global interaction graph and the local cascade graphs as input,
and then generates initial feature representations of users;
(b) Structural Learning Module, which takes a variational
graph autoencoder (VGAE) followed by SAGPool mechanism
to learn structural representations of cascades; (c) Temporal
Learning Module, which takes a variational temporal autoen-
coder (VTAE) followed by TimeDecay mechanism to learn
temporal representations of cascades; (d) Loss Calculation
Module, which calculates the mean squared loss of popularity
and combines it with the reconstruction loss of two variational
autoencoders for optimization. The following parts will give
detailed illustrations of the modules.

C. Feature Preprocessing

The feature preprocessing module generates initial feature
representations of users. It takes both the global interaction
graph and the local cascade graph as input, generating global
user embeddings by sparsification and matrix factorization,
and local embeddings by graph filtering. These embeddings
are concatenated to form the initial user features X .

Global features. Different cascades are usually with varying
sizes, exhibiting strong heterogeneity, and users may partici-
pate in multiple cascades simultaneously. Therefore, to learn
more structural features, we first aggregate multiple cascades
into a global interaction graph, allowing different cascades
to share information with each other. In the constructed
undirected graph G, each node represents a user and each edge
indicates a forwarding behavior. Note that the edge direction is
ignored to allow bidirectional information transmission. This
is beneficial for structural feature learning, especially when
the underlying social network is unavailable. Since the global
graph G may contain millions of nodes and tens of millions
of edges, we adopt the NetSMF [41] algorithm to process
the graph and generate the global user embeddings XG. The
algorithm is based on graph sparsification and matrix decom-
position technique, exhibiting higher computational efficiency.
Its key idea is to use the following matrix factorization to
approximate the DeepWalk [38] algorithm:

log◦
(

vol(G)

b
M

)
(1)
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Fig. 1. Overall structure of the DVCAE model.

where M = 1/C
∑C

r=1

(
D−1A

)r
D−1, vol(G) =∑

i

∑
j Aij , C is the DeepWalk context window size, b is

a hyperparameter used to control regularization terms during
matrix decomposition, and log◦(·) stands for the element-wise
matrix logarithm. The specific process of NetSMF consists
of two steps. The first step is to perform the PathSampling
[41] algorithm multiple times to generate a sparse matrix
similar to the original adjacency matrix. The second step
is to perform Randomized SVD [42] on the sparse matrix.
Specifically, in the first step, during each iteration, the Path-
Sampling algorithm picks an edge e ∈ E and an integer
r uniformly at random. Then it uniformly draws an integer
k ∈ [r] and performs (k − 1)-step and (r − k)-step random
works starting from the two endpoints of edge e respectively,
leading to a length-r path. In the second step, the Randomized
SVD [42] is performed on the sparse matrix by projecting
the original matrix into a low-dimensional space through a
Gaussian random matrix.

Local features. Generally, a user may play different roles
when participating in different cascades. Therefore, given
a cascade graph GC , it is necessary to generate the local
user features within the cascade graph. Considering the high
heterogeneity of cascade graphs, we use GraphWave [43], a
graph filtering method to generate relatively stable local user
embeddings XC that are less sensitive to local topological
noises. Compared to techniques based on random walk, such
as DeepWalk [38] and Node2Vec [44], GraphWave is mainly
based on vertex-centered spectral graph wavelet diffusion
technique, and it uses heat kernel to filter out topologically
sensitive signals. Therefore, it is less likely to be affected by

small topological perturbations, which will benefit the model
generalization ability.

Finally, the above global interaction graph embeddings XG

and local cascade graph embeddings XC are concatenated as
the preprocessed node features X ∈ RN×f , which will serve
as input of the subsequent variational autoencoders.

D. Structural Learning

Given a specific cascade and its relevant data from the
observation window, to comprehensively capture the structural
information, we take the adjacency matrix A of the cascade
graph and the preprocessed node features X as input, and
employ the variational graph autoencoder to generate low-
dimensional hidden representations Zvgae of the nodes in
the cascade graph. The overall structure of the autoencoder
is shown in Fig. 2. Here, we improve the original VGAE
framework [45] by replacing the encoder with the graph
attention network (GAT), while for the decoder we use the
inner product to reconstruct the input adjacency matrix.

The encoder uses a double-layer GAT [46] network as
follows:

Zvgae = GAT Encoder(X,A) (2)

where X ∈ RN×f represents the node embedding matrix con-
taining the preprocessed node features, A ∈ RN×N represents
the adjacency matrix of the cascade graph, and Zvgae ∈ RN×d

represents the low-dimensional hidden embedding matrix of
nodes output by GAT Encoder.
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Fig. 2. The generation module of structural representation.

In the encoder, each node applies the following operations:

hi = GAT1(xi),

µi = GAT2(hi),

logσ2
i = GAT3(hi),

zi ∼ N (µi,σi)

(3)

First, GAT1 in the first layer is used to generate the hidden
representation hi ∈ Rd of node i. Then, parallel GAT2 and
GAT3 convert the hidden representation of the first layer
into the mean value µi ∈ Rd and the logarithmic variance
logσ2

i ∈ Rd, which are used to generate a high-dimensional
Gaussian distribution zi ∼ N (µi,σ

2
i ). Finally, we sample

on this Gaussian distribution to generate a low-dimensional
representation vector of the corresponding node.

For node i, the GAT layer uses the following multi-head
attention mechanism to generate the node representations:

hi = ∥Kk=1ReLU

 ∑
j∈N (i)

α
(k)
ij W (k)xj

 (4)

where ∥ indicates concatenation operation, K represents the
number of attention heads, and ReLU(·) indicates the non-
linear activation function, which makes the learning process
more stable.

In the decoder, the inner product of the hidden represen-
tations between nodes is used to reconstruct the adjacency
matrix Â, which is:

Â = Sigmoid(ZvgaeZvgae
T ) (5)

where Sigmoid(·) represents the nonlinear activation function.

The following cross-entropy loss function is further applied
to calculate the reconstruction loss:

Lstru = − 1

N

∑
y∈A

y log ŷ + (1− y) log(1− ŷ) (6)

where y ∈ {0, 1} represents the value of a specific element
in the adjacency matrix A, and ŷ ∈ [0, 1] indicates the
reconstructed value of the corresponding element. Meanwhile,
to maintain the variational characteristics, the KL divergence,
which measures the similarity between two distributions, is
used in the variational autoencoder for loss calculation. The
final loss of VGAE is calculated as follows

LV GAE = Lstru −KL[q(Zvgae|X,A)||p(H)] (7)

where KL[·] is the KL divergence, q(Zvgae|X,A) represents
the distribution calculated by GAT, and p(H) is the prior
distribution, for which the standard normal distribution is used.

After the hidden representations of nodes in the cascade
graph are generated based on VGAE, the structural represen-
tations of the whole cascade graph are further generated via
pooling operation. Considering that different users may play
different roles in the cascade graph, we employ SAGPool [47]
method to perform weighted pooling, generating the hidden
representations ζvgae ∈ R2d for the cascade graph.

Specifically, the SAGPool method consists of three steps.
The first step is to construct a self-attention graph pooling
layer to obtain the self-attention scores for each node, which
is calculated as follows:

Zvgae
(l+1) = Tanh

(
D̃

− 1
2 ÃD̃

− 1
2Zvgae

(l)Θatt

)
(8)

where Θatt ∈ RN×1 is the projection transformation matrix,
Z(l+1) ∈ RN×1 indicates the learned self-attention scores,
whose values fall within [−1, 1], N is the number of nodes
in the global interaction graph, and Tanh(·) represents the
nonlinear activation function.

The second step is to select the Top-K nodes according to
the above self-attention scores and the pooling rate k ∈ [0, 1],
resulting in a Mask matrix, which is used to obtain a subgraph
with the following node ids:

idx = top-rank(Zvgae, ⌈kN⌉) (9)

Finally, the Readout layer concatenates the output of aver-
age pooling and max pooling to generate the final representa-
tions for the cascade graph, which is:

zpool =
1

⌈kN⌉

⌈kN⌉∑
i=1

zvgae(i)

∥∥∥∥∥∥ ⌈kN⌉
max
i=1

(zvgae(i)) (10)

After pooling, the structural hidden representations ζvgae =
zpool is generated for the cascade graph.

E. Temporal Learning

The temporal representation learning module focuses on
capturing the temporal information from the cascade. To
this end, an improved variational time series autoencoder is
used to learn from the cascade sequence and generate the
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temporal hidden representations. As shown in Fig. 3, the
nodes of a cascade are firstly ordered according to their
participating time, resulting in a node sequence. Then, we
input the node sequence and the preprocessed node features X
into the temporal variational autoencoder. In the autoencoder,
the bidirectional GRU (Bi-GRU [48]) network is used as
the encoder, and DNN is used to generate the parameters
for the Gaussian distribution. The decoder also uses GRU
network to reconstruct the node representations. Finally, the
loss is calculated by measuring the similarity between the input
vector and the output vector of the nodes at each moment in
the node sequence.

Node Sequence of Local Cascade Graph
Preprocessed
features      

Generate             

Generate     : DNN Layer

Encoder: Bi-GRU Network

Generate              : DNN Layer

Decoder: Bi-GRU Network

VTAE: Variational Temporal AutoEncoder

TimeDecay

Fig. 3. The generation module of time-series representation.

Similar to VGAE, the VTAE encoder first generates tempo-
ral hidden representations using a Bi-GRU network, and then
generates a Gaussian distribution using a DNN network on
this basis. The corresponding formulas are as follows:

Zvtae = RNN Encoder(X) (11)
→
h i ∥

←
h i = Bi GRU(xi),

µi = DNN1(
→
h i ∥

←
h i),

logσ2
i = DNN2(

→
h i ∥

←
h i)

(12)

where
→
h i ∥

←
h i ∈ R2d represents the bidirectional embed-

dings learned for user i, and the arrows above the symbols
represent the directions. The mean µi ∈ Rd and variance
logσ2

i ∈ Rd are generated based on two relatively independent
DNNs. Similarly, the low-dimensional representations zi ∈ Rd

corresponding to each user in a cascade sequence is sampled
from the Gaussian distribution.

The decoder again uses a Bi-GRU network to reconstruct
the representation vector of each user in the cascade sequence,
calcuated as follows:

X̂ = RNN Decoder(Zvtae) (13)

→
h′i ∥

←
h′i = Bi GRU(zi),

x̂i = DNN(
→
h′i ∥

←
h′i)

(14)

where
→
h′i ∥

←
h′i ∈ R2d represents the embedding of user

i after decoding, and x̂i ∈ Rf represents the reconstructed
node vector.

The loss of VATE is calculated by measuring the difference
between the input and output node representations. Similarly,
KL divergence is added to the loss calculation to prevent
overfitting, which is:

LV TAE = Lfeat −KL[q(Zvtae|X)||p(H)] (15)

Lfeat =

N∑
i=1

||xi − x̂i||2 (16)

After node representations are generated through VTAE, we
use the Readout operation to obtain the representations for the
entire cascade sequence. Considering the time decay effect
in information propagation [15], the GRU network is used to
produce the final output, and the time decay coefficient is used
as the weight to realize weighted pooling, which is calculated
as follows:

ζvtae =

RT∑
j=1

λf(T−tj)zj (17)

where zj represents the hidden representations of user j,
λf(T−tj) represents the decay coefficient, calculated as f(T −
tj) = l, T − tj ∈ [tl−1, tl). RT represents the length of
the cascade within the observation window. After pooling,
the temporal hidden representations ζvtae ∈ 2d of the entire
cascade sequence is generated.

F. Loss Calculation and Prediction

After concatenating ζvgae and ζvtae, we feed them into
the multi-layer perceptron to generate the prediction ∆P̂ .
Then, mean squared error (MSE) loss is used to calculate the
difference between the predicted value and the true value. To
avoid the overfitting issue caused by only using the MSE loss
for model optimization, we enrich the supervision signals by
integrating the reconstruction losses of the two autoencoders.
The final loss is calculated as follows:

LDV CAE =
1

M

∑M

m=1

(
(log2(∆Pm)− log2(∆P̂m))

2

+λ1LV GAE(m) + λ2LV TAE(m)
) (18)

where λ1, λ2 ∈ [0, 1] are the weighting parameters. The in-
troduction of reconstruction losses could balance the learning
of cascade popularity as well as the structural and temporal
information, leading to better generalization ability.

G. Complexity Analysis

The time complexity of DVCAE model comes from two
parts: preprocessing and dual variational autoencoder.

For preprocessing, the NetSMF algorithm optimizes net-
work embedding through multiple iterations. Each iteration
needs to update the representations of nodes by traversing their
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neighbors, leading to O(|VG |2) time, where |VG | is the graph
size after sparsification. Suppose that the algorithm iterates T
times, then the overall iteration time complexity is O(|VG |2 ·
T ). The time complexity of GraphWave involves eigenvalue
decomposition of the Laplace matrix of the graph. The time
complexity of eigenvalue decomposition is usually O(|VC |3),
where |VC | is the local cascade graph size. Therefore, the
preprocessing time complexity is O(|VG |2 · T ) +O(|VC |3)

For the variational autoencoders, the time complexity of the
encoder of VGAE equals that of the three-layer GAT, whose
complexity mainly lies in the inner product calculation of
attention coefficients, which is O(|VC |2 · d). For the decoder,
since it relies on inner product to reconstruct the input, so
its complexity is also O(|VC |2). Therefore, the computational
complexity of VGAE is O(|VC |2 · d). The time complexity of
encoder and decoder of VTAE mainly lies in the calculation in
Bi-GRU, whose time complexity is O(|VC | · d2). Therefore,
the time complexity of the dual variational autoencoders is
O(|VC |2 · d+ |VC | · d2).

In sum, although the preprocessing time complexity is
slightly higher, the model training is much more efficient,
which is suitable for iterative training in large-scale datasets.

IV. EXPERIMENTAL EVALUATION

A. Datasets

We select three large-scale public datasets for experimental
evaluation. Each dataset includes the forwarding paths and
timestamps, allowing us to build the global interaction graph
and local cascade graphs. Detailed statistics of the three
datasets are summarized in Table I.

APS1: It includes scientific papers published by the Amer-
ican Physical Society from July 1, 1893 to December 29,
2017. We take papers from 1893 to 1997 as training samples,
with a 20-year period (1997-2017) left for cascade grow. Each
paper from 1893 to 1997 is regarded as a node, connected
by the citation relationship to construct an undirected global
interaction graph. The monitoring time windows are set to 3
and 5 years respectively, and the future prediction time window
is set to 20 years.

Weibo-II2: It contains microblogs and their reposting
records published on June 1, 2016, collected from the the
Weibo platform (including reposting paths and timestamps).
Only microblogs posted between 8:00 AM and 6:00 PM are
retained, ensuring that each microblog has at least 6 hours of
reposting time. The monitoring windows chosen are 0.5 hours
and 1 hour, with a future prediction window of 24 hours.

Twitter-II3: It consists of public tweets posted on the Twit-
ter platform from March 24, 2012, to April 25, 2012. In this
dataset, user sequences with the same label within the monitor-
ing time are treated as independent information cascades. The
global graph for this dataset is constructed based on multiple
relationships, including follower/followee, retweeter/blogger
interactions. The cascade graph is constructed based on these
relationships. The monitoring time window is set to 1 day and

1https://journals.aps.org/datasets.
2https://bit.ly/weibodataset.
3https://carl.cs.indiana.edu/data/#virality2013.

2 days respectively, and the future prediction window is set to
32 days.

TABLE I
STATISTICS AND DIVISIONS OF DATASETS.

Dataset APS Weibo-II Twitter-II

Total # of cascades 207,685 119,313 88,440
Total # of nodes (users) 616,316 6,738,040 490,474

Total # of forwards 3,304,400 15,249,636 1,903,230
Average popularity 51 240 142

Training set (3y/0.5h/1d) 18,511 21,463 9,639
Validation set (3y/0.5h/1d) 3,967 4,599 2,066

Test set (3y/0.5h/1d) 3,966 4,599 2,065
Training set (5y/1h/2d) 32,102 29,908 12,739

Validation set (5y/1h/2d) 6,879 6,409 2,730
Test set (5y/1h/2d) 6,879 6,408 2,729

B. Experimental Setup
1) Parameter Settings: In our experiments, grid search is

used to determine the model hyperparameters according to
Table II. Adam optimizer is adopted, with training epochs set
to 1000. The training will be stopped in advance when the
loss value and the MSLE of the validation set do not decline
for 10 consecutive epochs. The learning rate of optimizer is
0.005 and the weight decay parameter (L2 penalty) is set to
0.001. The initial global and local embedding dimension is
set to 40. The hidden representation dimension d of VGAE
and VTAE is 64. The pooling rate k of SAGPool is 0.5, and
the time decay dropout is 0.5. The structural and temporal loss
coefficients λ1 and λ2 are both 0.5. The dimensions of the last
two MLP layers are 2× d and d, i.e. 128 and 64 respectively.

TABLE II
THE TUNING OF DVCAE MODEL HYPERPARAMETERS.

Hyperparameter Grid search values

Learning rate {1e-3, 5e-3, 1e-4, 5e-4}
Weight decay parameter {1e-3, 1e-4, 1e-5}

Hidden representation dimension d {16, 32, 64, 128, 256}
Pooling rate of SAGPool k {0.3, 0.4, 0.5, 0.6, 0.7}

TimeDecay dropout {0.3, 0.4, 0.5, 0.6, 0.7}
Structural loss weight λ1 {0.3, 0.4, 0.5, 0.6, 0.7}
Temporal loss weight λ2 {0.3, 0.4, 0.5, 0.6, 0.7}

2) Evaluation Metrics: Following previous studies [15],
[25], [36], we choose MSLE and MAPE as the evaluation
metrics in this paper. MSLE is calculated as follows:

MSLE =
1

M

M∑
i=1

(log2(∆P̂i)− log2(∆Pi))
2 (19)

MAPE reduces the effect of extreme valued samples by the
normalization of error, and it is calculated as follows:

MAPE =
1

M

M∑
i=1

|log2(∆Pi)− log2(∆P̂i)|
log2(∆Pi)

(20)

C. Baselines
In order to comprehensively evaluate the effectiveness of

DVCAE model, we choose 11 baseline methods from the
following categories.
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1) Feature Engineering Method: We consider the features
designed in [49], including the cumulative popularity se-
quence, the time between the content generator and the first
participant, the average time between the first half and the
second half participants, the number of leaf nodes, the average
node degree, the average and maximum sequence lengths.
These features are input into the MLP model to generate
predictions. We refer to this baseline as Feature-based.

2) Methods Based on Temporal Representation: The rep-
resentative models include DeepCas [30] and DeepHawkes
[15]. For the Random Walk algorithm used in DeepCas and
DeepHawkes, it is set to sample paths with K = 200 and length
T = 10. The hidden layer of each GRU is set to 32 units. The
hidden dimension of the two fully connected layers is set to 32
and 16 respectively. The embedding dimension is set to 64.
In addition, we further include a simple time series model,
denoted as TimeSeries [50], for comparison.

3) Methods Based on Graph Representation: CasCN [25],
DMT-LIC [31], and DeepCon&DeepStr [28] are selected as
the representative models. For CasCN, we keep the original
optimal parameters setting (2 convolutional layers) and set the
embedding dimension to 50. For DMT-LIC, the embedding
dimension is also set to 50, and the number of RNN units is
set to 32. The DeepCon&DeepStr parameter settings are the
same as the DeepCas model.

4) Methods Based on Autoencoder: AECasN [14] utilizes
autoencoder to capture structural and temporal information
from the whole cascade graphs, mapping them into low-
dimensional vectors for popularity prediction. CasFlow [32]
uses variational autoencoders to encode pre-learned structural
features at user and cascade levels, and proposes normalized
flow (NF) module for structural representation normalization.
The VAE and NF loss ratio in CasFlow is set to 1.0, while
other hyperparameters retain their original settings.

Additionally, two recent models, CasTformer [36] and
I3T [37], are included for comparison. CasTformer enhances
the self-attention mechanism by using global spatio-temporal
coding and a relative relation bias matrix to model cascade
relationships, along with self-knowledge distillation for better
cascade representation. I3T combines GNN and DeepWalk for
learning intra- and inter-path influence, then applies Bi-LSTM
for temporal feature learning, and finally uses an improved
GRU-based attention mechanism to determine structure weight
factors. The original parameter settings for both models are
retained.

D. Experimental Results

1) Overall Results: The overall experimental results are
shown in Table III, where the best results are in boldface.

Compared with the simple Feature-based and TimeSeries
models, DVCAE performs much better in MSLE and MAPE
metrics (MSLE improved by 20.3% on average and MAPE
improved by 5.2% on average). It indicates that DVCAE has
stable and better prediction performance.

Compared with the temporal learning-based DeepCas and
DeepHawkes models, DVCAE shows significant improvement
on APS and Twitter-II datasets (MSLE improved by 16.2%

on average). The DeepCas model mainly relies on a Random
Walk algorithm to generate node sequences, which results in
the loss of essential structure information. Similarly, Deep-
Hawkes only takes node sequence as input data, ignoring
the real propagation structure. On the contrary, both temporal
and structural characteristics are elaborately considered in
DVCAE, leading to better performance over DeepCas and
DeepHawkes.

Compared with the graph learning-based Deep-
Con&DeepStr, CasCN and DMT-LIC models, DVCAE
achieves an average improvement of 14.1% in the MSLE
metric across the three datasets. Unlike DeepCon&DeepStr
which uses Random Walk and semi-supervised language
model for feature learning, GNN-based models can better
capture the internal structural features of the cascade.
Although CasCN and DMT-LIC models have considered both
structural and temporal features, they only used the popularity
prediction loss for model optimization, which may result
in the overfitting issue. Besides, they did not consider the
global interactions between different cascades. It shows that
the utilization of global interaction graphs and local cascade
graphs in DVCAE makes feature learning more effective, and
the features learned from VGAE and VTAE are not only used
for prediction but also be constrained by the reconstruction
losses to improve the model generalization ability.

Compared with autoencoder-based AECasN and CasFlow
models, it is observed that DVCAE and CasFlow perform bet-
ter than AECasN on the three datasets. This is mainly because
AECasN ignores the features in the global interaction graph,
indicating the importance of global interaction information.
Although DVCAE performs sparsification on the global inter-
action graph, it still learns valuable features that are beneficial
to the model performance. Compared with CasFlow which also
adopts global and local features, DVCAE is superior on APS
and Twitter-II dataset in both metrics. This is because CasFlow
only uses feature reconstruction loss in VAE, while DVCAE
considers both structural and feature reconstruction losses.
However, we also obseve that the performance of DVCAE
on Weibo-II (0.5h) is less significant. This is mainly because
there are few users to construct a stable global interaction
graph due to the relatively short observe window. It can
be seen that with the increase of the observation window,
the performance of DVCAE on Weibo-II and Twitter-II is
significantly improved, which also indicates the importance
of graph structural information learned by DVCAE.

Compared with the Transformer-based CasTfomer model,
DVCAE model has better performance across all datasets. This
is because CasTformer indistinguishably learns the structural
and temporal representations through Transformer sequence
modeling, while DVCAE uses hyperparameters to determine
the contribution of different reconstruction losses, which can
directly adjust the influence of structural learning and temporal
learning. Compared with CasTfomer model, DVCAE model
has fewer parameters and better efficiency. Compared with
I3T model, DVCAE exhibits more advantages in APS (5y)
and Twitter-II (2d), because DVCAE’s preprocessing module
adopts global interaction graph, which can capture more useful
information than the I3T model.
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TABLE III
COMPARISON WITH THE EXPERIMENTAL RESULTS OF BASELINES.

Model APS Weibo-II Twitter-II
3y 5y 0.5h 1h 1d 2d

MSLE MAPE MSLE MAPE MSLE MAPE MSLE MAPE MSLE MAPE MSLE MAPE

Feature-based 1.844 0.270 1.666 0.282 2.715 0.267 2.546 0.272 7.438 0.590 6.357 0.500
TimeSeries 1.867 0.271 1.735 0.291 2.990 0.277 2.693 0.268 7.814 0.547 6.023 0.493
DeepCas 1.548 0.286 1.532 0.285 2.692 0.259 2.582 0.270 7.963 0.598 6.725 0.534

DeepHawkes 1.573 0.271 1.324 0.335 2.891 0.268 2.796 0.282 7.216 0.587 5.788 0.536
CasCN 1.562 0.268 1.421 0.265 2.804 0.254 2.732 0.273 7.183 0.547 5.561 0.532

DeepCon&DeepStr 1.570 0.272 1.562 0.269 2.595 0.261 2.571 0.271 7.044 0.567 5.734 0.569
DMT-LIC 1.539 0.264 1.398 0.258 2.752 0.249 2.689 0.270 7.434 0.545 5.427 0.481
AECasN 1.482 0.269 1.384 0.260 2.540 0.273 2.468 0.266 7.021 0.560 5.872 0.559
CasFlow 1.387 0.249 1.398 0.252 2.402 0.281 2.409 0.273 6.997 0.568 5.220 0.472

CasTformer 1.533 0.241 1.492 0.254 2.539 0.250 2.471 0.269 6.291 0.531 4.821 0.465
I3T 1.372 0.247 1.361 0.253 2.459 0.261 2.409 0.267 6.224 0.593 5.001 0.474

DVCAE 1.219 0.238 1.220 0.245 2.468 0.253 2.397 0.265 6.114 0.525 4.601 0.463
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图 4.4 不同池化率对 DVCAE 模型的影响 

Fig.4.4 Effects of different pool ratios on DVCAE model
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Fig. 4. The impact of representation dimension d on model performance.
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Fig. 5. The impact of pooling rate k on model performance.

2) Parameter Sensitivity Analysis: We investigate how dif-
ferent hyperparameters affect the performance of DVCAE. To
this end, we mainly consider four hyperparameters, including
hidden representation dimension d, pooling rate k in SAGPool,
structural loss weight λ1 of VGAE and temporal loss weight
λ2 of VTAE. The MSLE and MAPE results of DVCAE
model under different parameter settings on three datasets are
reported and shown in Fig. 4, Fig. 5, and Fig. 6.

Impact of hidden representation dimension d. Fig. 4
shows the model performance when the value of d varies
in {16, 32, 64, 128, 256}. It can be seen that the MSLE and
MAPE metrics show the same trend as the dimension d grows
from 16 to 256, and the DVCAE model reaches its best
performance when d ∈ {32, 64}. Later, the model performance
gradually degrades as the parameter d further increases, which
may be related to the overfitting phenomenon caused by the
excessive large dimension size.

Impact of pooling rate k in SAGPool. Pooling rate k in
SAGPool determines the proportion of nodes retained from
the original cascade graph to produce final cascade repre-

sentations. A higher k indicates more scattered information
gathered from nodes in the cascade graph, which may lead
to the over-smoothing issue, while a lower k means focusing
on information from a few critical nodes. Fig. 7 shows the
model performance when k varies in {0.3, 0.4, 0.5, 0.6, 0.7}.
From the results we see that either a too low or a too high
value of k would result in inferior model performance, and
it is interesting so see that across all the three datasets, the
model reaches its optimal performance when k = 0.5.

Impact of λ1 and λ2. The DVCAE model jointly optimize
the prediction loss, the structural reconstruction loss of VGAE
and the temporal reconstruction loss of VTAE. Therefore, the
hyperparameters λ1 and λ2 are used to balance the importance
of VGAE and VTAE losses respectively. In Fig. 6, the 3D
heatmaps show how the model loss (left), MSLE (middle), and
MAPE (right) change along with λ1 and λ2 on APS, Weibo-
II, and Twitter-II datasets respectively, where the values of λ1

and λ2 varies from 0.3 to 0.7. On the APS dataset, it can
be seen that the loss increases with the increase of λ1, while
it does not vary significantly under different values of λ2. It
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TABLE IV
ABLATION EXPERIMENT RESULTS.

Dataset APS Weibo-II Twitter-II

Observation time 3y 0.5h 1d

Evaluation metrics MSLE MAPE MSLE MAPE MSLE MAPE

DVCAE 1.219 0.238 2.468 0.253 6.114 0.525
DVCAE-noNetSMF 1.832 0.266 3.002 0.293 11.738 0.809

DVCAE-noGraphWave 1.634 0.259 2.852 0.228 7.624 0.594
DVCAE-noVGAE 2.314 0.346 2.916 0.286 12.744 0.985
DVCAE-noVTAE 1.273 0.247 2.657 0.277 6.369 0.492

indicates that the structural loss has contributed to the majority
of the overall loss. In our experiment, MSLE is used as the
criterion for hyperparameter fine-tuning. As can be seen from
Fig. 6a, the model reaches its local minimum of MSLE when
λ1 = 0.4 and λ2 = 0.5, which means the model properly
balances the three losses and can stably learn the structure
and temporal information. On the Weibo-II dataset, similar
phenomenon can be observed from Fig. 6b where the loss
firstly increases with the increase of λ1, and then fluctuates
with the change of λ2, which indicates that structural loss also
contributes to a larger proportion of the total loss. In terms of
the MSLE and MAPE measures, when λ1 and λ2 are small
(λ1 = λ2 = 0.3), the error of DVCAE model is significantly
larger (MSLE > 2.7,MAPE > 0.3). With the increase of λ1

and λ2, the error gradually decreases, which indicates that
structural loss and temporal loss are important to ensure the
model performance. Specifically, the model can maintain good
performance when λ1 = λ2 and take value from [0.5, 0.7].
On the Twitter-II dataset, it can be seen from Fig. 6c that
the loss fluctuates greatly under different λ1 and λ2 values,
which means both structural and temporal reconstruction loss
contribute significantly to the total loss. When we look at
the MLSE and MAPE measures, we see similar results as
observed on the Weibo-II dataset, i.e., the model achieves its
local optimum when λ1 and λ2 take value from [0.5, 0.7]. In
general, the results in Fig. 6 clearly validates the importance
of structural and temporal reconstruction losses designed in
this paper. Properly incorporating the reconstruction losses
into the prediction loss could significantly benefit the model
performance and improve its generalization ability.

3) Ablation Experiments: In order to demonstrate the im-
portance of each module in DVCAE, a series of ablation
studies are further conducted on the DVCAE model. The
observation time windows are set to 3 years, 0.5 hour and 1
day for the APS, Weibo-II, and Twitter-II datasets respectively.
The specific ablation variants are as follows:

• DVCAE-noNetSMF: This variant removes the global
user embeddings generated by NetSMF from the input.

• DVCAE-noGraphWave: This variant removes the local
user embeddings generated by GraphWave from the input.

• DVCAE-noVGAE: This variant removes the VGAE and
SAGPool parts of the model.

• DVCAE-noVTAE: This variant removes the VTAE and
TimeDecay parts of the model.

Table IV shows the ablation results of DVCAE and related

variants on three datasets.
Effectiveness of the feature preprocessing module: In

terms of MSLE metric, DVCAE-noGraphWave and DVCAE-
noNetSMF are significantly inferior to DVCAE, and the
MSLE of DVCAE-noNetSMF is more than 20% higher on
average as compared with DVCAE on the three datasets. It
is even doubled on the Twitter-II dataset, which indicates
that both global and local preprocessed node features capture
valuable structural information from cascade graphs, and the
global features learned with NetSMF ensure more stable and
better performance.

Effectiveness of the VGAE module: It is observed that
when the VGAE module is removed from DVCAE, its perfor-
mance deteriorates significantly as compared to other variants
in terms of the two evaluation metrics. The results indicate
that the VGAE and SAGPool mechanisms proposed in this
paper can effectively learn the key structural information from
cascade graphs to reflect their future diffusion trend.

Effectiveness of the VTAE module: Among the five
variants, the results of the DVCAE-noVTAE model are the
closest to those of the DVCAE model, and its MAPE metric
on the Twitter-II dataset is even better than the DVCAE model,
indicating that temporal information plays a relatively weak
role in the DVCAE model. It may be due to the fact that
GRUs are not very suitable for long-term time series modeling
of information cascade propagation, and may ignore the role
of the earlier forwarders.

4) Representation Visualization: To visually shown that
our DVCAE model can learn meaningful representations,
we employ the t-SNE [51] algorithm to project the hidden
representations of test sets into a two-dimensional space, as
shown in Fig. 7, where the left, middle and right columns cor-
respond to the global representation (ζvgae∥ζvtae), structural
representation (ζvgae), and temporal representation (ζvtae),
respectively. Each point in Fig. 7 indicates a cascade example,
and the color reflects the true popularity label (after loga-
rithmic transformation), with darker colors indicating higher
popularity.

APS: The APS test set contains 3,966 cascade samples,
as shown in Fig. 7a, from which we see that the structural
representations exhibit a significant trend in the distribution of
cascade popularity, where the color gradually becomes darker
from right to left. This indicates that the structural information
learned from the cascade graph is strongly related to the
future growth of the cascade. On the contrary, there is no
obvious trend in popularity distribution under the temporal
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(a) APS dataset.
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(b) Weibo-II dataset.
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(c) Twitter-II dataset.

Fig. 6. The impact of λ1 and λ2 on model performance.

representations, which means that temporal information has
higher uncertainty in information diffusion. The global repre-
sentations still exhibit a clear trend in popularity distribution
(gradually becoming darker from left to right), suggesting
that the global representations can properly capture the real
popularity distribution.

Weibo-II: The Weibo-II test set contains 4,599 cascade
samples. By comparing Fig. 7b and Fig. 7a, it can be observed
that the structural representations learned on the Weibo-II
dataset are even more distinguishable than the APS dataset,
and the popular and unpopular cascade samples are clearly
separated. Similarly, the temporal representations learned by
the VTAE module are less distinguishable than the structural
representations learned by the VGAE module.

Twitter-II: The Twitter-II test set contains 2,065 cascade
samples. As shown in Fig. 7c, the structural representations
can better separate popular cascades from unpopular ones,
exhibiting similar behavior to the Weibo-II and APS datasets.
The major difference is that the Twitter-II test set contains
more extreme examples (as shown by the dark points located
in the light area), and has popularity with a wider range.

In short, the visualization results consistently show that the
representations learned by the VGAE module are more distin-
guishable in terms of popularity. The temporal information in
the cascade can be fine-tuned on this basis, and finally leading

to more accurate predictions.

5) Case Study: To validate the practicability and reliability
of our DVCAE model, we use a case study to show its
superb ability in predicting information popularity for cascades
with completely different structural characteristics. Specifi-
cally, Fig. 8 shows the graph structure of two cascades within
the 1-hour observation window, where the left cascade has 113
participants while the right one contains 72 participants during
the observation window. It is straightforward to see that the
two cascades exhibit significantly different structures, where
cascade A is a typical star graph while cascade B shows more
complex connections. We use DVCAE to predict the 24-hour
(1-day) cascade size increase. Specifically, for cascade A, its
actual cascade size increase is 17, and the prediction is 14.
For cascade B, its actual cascade size increase is 386, and
the prediction is 397. Obviously, the two cascades not only
have different structures, but also exhibit completely different
growing patterns, where cascade A grew by only 15%, while
cascade B grew by more than 500%. Nevertheless, DVCAE
can still accurately predict the cascade growth, with a relative
error of 17.6% and 2.8% respectively. The results indicate
that the DVCAE model can accurately and reliably capture
the propagation and growing patterns for different cascade
structures. Moreover, our statistical results show that nearly
3% of the cascade samples contain less than 15 nodes in
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(a) APS dataset.
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(b) Weibo-II dataset.
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(c) Twitter-II dataset.

Fig. 7. Dimensionality reduction visualization of hidden variable representa-
tion of DVCAE model on three datasets.

the 1-hour observation window, while their final cascade sizes
reach more than 100. For these cascades, the DVCAE model
exhibits an average prediction error of less than 2.5, validating
its superb ability for popularity prediction.
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(a) Cascade sample A (b) Cascade sample B

2.2 图神经网络相关技术 

图神经网络用于学习拓扑结构数据，能将图中的属性信息与结构信息有效结

合，将捕捉到的图的拓扑结构、节点属性、边属性、节点与节点之间的关系、子图

等信息映射到固定维度、稠密的向量空间。图神经网络可以根据不同的图数据做出

调整，具有较好的适应性。本节将依次介绍图卷积网络、图注意力网络、异构图神

经网络与变分图自编码器。 

2.2.1 图卷积网络 

图卷积网络（Graph Convolution Network，GCN）被广泛作为研究图神经网络

的理论基础，计算如式(2.2)所示， 

=GCN( , )H X A  (2.2) 

其中， H
N d 表示图中节点最终输出的嵌入矩阵，N 为图中节点总数量，d 为输

出维度； X
N f 表示输入的节点特征矩阵，f 为输入维度； A

N N 表示图的邻

接矩阵。

在基于空域的理论中，可以通过标准 2-D 卷积来理解图卷积[62]：例如图 2.7

（左）所示，为 2-D 卷积示意图，如果从图像中的像素点角度来看 2-D 卷积，2-D

卷积可表示为滤波器窗口中所有像素点的特征聚合；推广至图 2.7（右）所示，此

为图卷积示意图，图卷积算子的方法则为利用邻居节点的聚合来重新表示中心节

点。两者区别在于 2-D 卷积的滤波器窗口为划分的规则方形，而图卷积是根据图

上连接关系确定局部邻域。 

Fig. 8. Case study for two cascades with completely different structures.

V. CONCLUSION

In this paper, we considered the key challenges of un-
available underlying social relations, cascade heterogeneity
and limited supervision signals in the popularity prediction
problem, and proposed a semi-supervised Dual Variational
Cascade AutoEncoders model for accurate cascade popularity
prediction. To this end, we constructed a global interaction
graph by aggregating multiple cascades to learn structural

information more comprehensively. To fully capture both
structural and temporal information from the cascades, we
employed two parallel variational autoencoders and incorpo-
rated their reconstruction losses into the popularity prediction
loss to enrich the supervision signals for optimization. We
conducted extensive experiments on three real-world datasets
and the results clearly show the superiority of our model over
the state-of-the-art methods.

There are several possible directions for the improvement
of our work. Firstly, the structural and temporal loss weights
are manually set in the DCVAE model. In the future we
will consider adaptive weights to reduce the retraining costs.
Secondly, our model is mainly based on the structural and
temporal information of cascades. In the future we will
consider incorporating more information such as the message
content and topic information to further increase the prediction
performance. Finally, our model is only used for macroscopic
popularity prediction, and it can be extended to support
microscopic diffusion prediction in the future.
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