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ABSTRACT
Membership testing, which determines whether an element belongs
to a set, is widely used in fields like database systems and network
applications. Bloom Filters (BFs) can solve this problem efficiently
but suffer from high False Positive Rates (FPRs) and large memory
requirements for massive datasets. Learned Bloom Filters (LBFs),
combining a learning model with a backup Bloom Filter, mitigate
these issues by capturing data distributions. However, the critical
problem of memory allocation between the learning model and the
backup filter has usually been overlooked, despite its significant
impact on LBF performance under constrained budgets.

To this end, we propose Gama, the first General Adaptive Mem-
ory Allocation framework for LBFs as far as we know. Gama intro-
duces two memory allocation strategies: Loop-Based method and
Bayesian-Based method. Loop-Based method evaluates all configu-
rations at each training epoch, making it well-suited for scenarios
with tight memory constraints. However, it faces efficiency chal-
lenges under large memory budgets due to the requirement for
exhaustive evaluations. In contrast, Bayesian-Based method effi-
ciently navigates the search space through probabilistic exploration,
which reduces the number of configurations evaluated and signif-
icantly improves the efficiency while maintaining FPRs. Further-
more, we propose a hybrid approach that combines their strengths
to dynamically adapt to different constraints. Experiments on three
real-world datasets show that Gama can achieve a relative perfor-
mance improvement of 69% in terms of FPR in the best case.

KEYWORDS
Learned Bloom Filter, Approximate Membership Testing, Bayesian
Optimization
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1 INTRODUCTION
Membership testing, the pivotal problem of determining whether an
item 𝑥 belongs to a set 𝑆 , plays a critical role in accelerating query-
driven tasks across multiple domains like database systems [17,
28, 29] and networking [1, 5, 6, 10, 12, 14, 15, 18, 26, 30, 36, 38, 45].
For example, in database systems, membership testing accelerates
point query execution by pre-filtering non-existent items, reducing
I/O and network overhead [6]. A key challenge in these scenar-
ios is managing the trade-off between memory consumption and
query performance. To address this, approximate data structures
like Bloom Filters (BFs) [3] have become an essential tool for accel-
erating membership testing under resource constraints.

Traditional BF [3] utilizes several hash functions to map each
item into certain bits in a bitmap. However, BF cannot capture the
distribution of a given set, leading to limited performance in terms
of FPR (false positive rate). When the size of dataset is large and the
memory budget is constrained, the FPR of a BF could be rather high.
Although there are numerous BF variants [11, 13, 16, 22, 27, 43, 44,
48, 51] proposed, they have not made a notable breakthrough yet.

To break this limitation, Learned Bloom Filter (LBF) [24] incorpo-
rates a learning model to capture the data distribution, significantly
reducing FPR under the same memory budget. An LBF consists of
a learning model that predicts membership likelihood and one or
more backup Bloom Filters to handle uncertain predictions. How-
ever, existing works largely focus on optimizing the structure of
LBFs [8, 35, 42], but rarely consider the memory allocation between
the learning model and backup BF(s). We find that memory allo-
cation imposes significant effects on the overall performance of
an LBF. As shown in Fig. 1(a), given a memory budget, when the
memory proportion of the learning model changes from 10% to 90%,
the FPRs on two real-world datasets vary significantly. Therefore, it
is of great importance to find the best memory allocation strategy
for an LBF under a given total memory budget.

https://doi.org/10.1145/3746252.3761196
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Figure 1: Motivation of Memory Allocation for LBF.

It is challenging to employ the best memory allocation on LBFs.
Challenge I, the relationship between the memory allocation and
the overall performance of an LBF is complicated. On one hand,
as shown in Fig. 1(b), for a certain dataset, under different total
memory budgets, the best memory allocation strategies are different.
On the other hand, for different datasets, under the same memory
budget, their best memory allocation strategies are different as well.
Challenge II, how to train a learning model that occupies a given
amount of memory? We should make full use of the given memory
to build a learning model to fit the dataset. Challenge III, memory
allocation proportion is continuous, and the learning model along
with its hyper-parameters can be also considered as continuous
variables. Enumerating the entire parameter space in a brute-force
manner is time-consuming, if not infeasible.

To this end, this paper proposes Gama, the first holistic General
AdaptiveMemoryAllocation framework for LBFs to the best of our
knowledge. The objective of Gama is to minimize the overall FPR
of an LBF under a given memory budget. Specifically, to address
Challenge I, given a dataset and a memory budget, Gama employs
a multiple-epoch process to fully explore the possible memory al-
location strategies, and select the best LBF from the constructed
LBFs. To resolve Challenge II, in each epoch, instead of first as-
signing some memory and then training a learning model, Gama
first determines the structure (along with the parameters) of the
learning model that occupies the fixed memory space, and then
assigns the left memory to the backup BF(s). To avoid the time-
consuming process of constructing LBFs, we propose a method that
does not require the actual construction of the LBFs (Section 3.2). To
address Challenge III, we make the best of the training process to
change the memory occupation of the learning model, thus avoid-
ing enumerating the infinite and continuous memory allocation
strategies and parameters. Moreover, we transform the exploration
process into a knob tuning problem and introduce Bayesian Op-
timization [37] to further enhance Gama’s efficiency. In specific,
Gama introduces two memory allocation strategies: Loop-Based
method, which ensures precise control over memory utilization
by incrementally training, and Bayesian-Based method that uses
probabilistic exploration to optimize memory allocation, which
enables it to achieve FPRs close to those of Loop-Based method un-
der large memory budgets while significantly improving efficiency.
To combine their strengths, Gama also includes a hybrid method,
which balances efficiency and FPR better. Overall, the contributions
of this paper are as follows:

(1) We propose Gama, the first general adaptive memory alloca-
tion framework for LBFs. Gama introduces two strategies: Loop-
Based method, offering precise memory allocation and suitable for
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Figure 2: Bloom Filter.

tight memory budgets, and Bayesian-Based method, exploring the
memory allocation more efficiently and achieving close FPRs under
large memory budgets.

(2) We develop a hybrid method that combines the strengths of
both strategies, allowing for effective optimization of the LBFs’ FPR
across various memory budgets.

(3) We propose a novel method to quickly determine the optimal
parameter of LBF and its corresponding FPR, eliminating the need
to fully construct the LBF, thus reducing evaluation overhead.

(4)We conduct extensive experiments on three real-world datasets
to evaluate the effectiveness of Gama. In the best case, Gama
achieves a relative FPR improvement of 69% over the original LBF.

The remainder of this paper is organized as follows. In Section 2,
we give some preliminaries. We introduce our proposed Gama in
detail in Section 3 and Section 4, corresponding to Loop-Based
and Bayesian-Based Memory Allocation, respectively. In Section 5,
we discuss how to combine the advantages of Loop-Based and
Bayesian-Based Memory Allocation and how Gama can be applied
to other LBF variants. The experimental results are presented in
Section 6. In Section 7, we summarize the related works. Finally,
we conclude this paper in Section 8.

2 PRELIMINARIES
In this section, we first give some background knowledge, and then
present the problem definition.

2.1 Background Knowledge
Bloom Filter. Bloom Filter (BF) is used to determine whether the
item 𝑥 is in set 𝑆 . It consists of a fixed-size bitmap and𝑘 independent
hash functions. Initially, all bits of the bitmap are set to 0. As shown
in Fig. 2, when an item is inserted into the set, 𝑘 hash functions are
used to map the item to 𝑘 bits in the bitmap, setting them to 1. In
order to determine whether the item 𝑥 exists, it uses the same 𝑘
hash functions to map 𝑥 to 𝑘 bits of the bitmap, and then checks
whether all corresponding bits are 1. If so, it is highly possible
that 𝑥 exists in 𝑆 . The situation where the item exists and the BF
determines that it exists is called a true positive (e.g., “COVID-19"
in Fig. 2). If there is at least one 0 bit, 𝑥 definitely does not exist
in 𝑆 (e.g., “Epidemic" in Fig. 2), which is called a true negative.
Since the hash function has a certain collision probability, when
all corresponding bits are 1, 𝑥 may not exist in 𝑆 (e.g., “Virus" in
Fig. 2), which is called a false positive. BF does not have any false
negative. Given a total size 𝜇𝐵 of bitmap and 𝑘 hash functions, if
we insert 𝑛𝐵 items into a BF, then its FPR 𝐹𝐵 is expected to be [23]:

𝐹𝐵 = [1 − (1 − 1/𝜇𝐵)𝑘𝑛𝐵 ]𝑘 ≈ (1 − 𝑒−𝑘𝑛𝐵/𝜇𝐵 )𝑘 (1)
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Figure 3: Structure of Learned Bloom Filter.

When choosing near-optimal 𝑘 = 𝜇𝐵 · 𝑙𝑛2/𝑛𝐵 , we have:

𝐹𝐵 = (0.5)𝜇𝐵 ·𝑙𝑛2/𝑛𝐵 (2)

Learned Bloom Filter. BF occupies a large amount of memory and
has a high FPR when the dataset is large, so Learned Bloom Filter
(LBF) is proposed, which combines a learning model and a backup
BF. As shown in Fig. 3, by using some available training data for
pre-training, the learning model can determine whether any given
query item 𝑥 belongs to the set 𝑆 based on the characteristics of
the data. In specific, LBF first sets a threshold 𝜏 . Then the item 𝑥 is
sent into the learning model, obtaining the prediction score 𝑓 (𝑥).
If 𝑓 (𝑥) > 𝜏 , 𝑥 is considered to exist in the set 𝑆 . Otherwise, 𝑥 will
be sent into the backup BF for further determination. The FPR 𝐹𝐿
of an LBF is defined as:

𝐹𝐿 = 𝐹𝑀 + (1 − 𝐹𝑀 ) · 𝐹𝐵 (3)

where 𝐹𝑀 represents the FPR of the learning model and 𝐹𝐵 is the
FPR of the backup BF. This formula means that: for a negative item,
there are two ways it can be mistakenly classified as a positive item.
First, the learningmodel may predict it as positive with a probability
of 𝐹𝑀 . Second, the learning model may predict it as negative, but
the BF incorrectly identifies it as positive (i.e., (1 − 𝐹𝑀 ) · 𝐹𝐵 ).

There is a trade-off between the learning model and the backup
BF. Intuitively, if the learning model is complex enough, its pre-
diction accuracy tends to be high, leading to a small 𝐹𝑀 . However,
a more complex learning model usually occupies larger memory,
hence resulting in less memory allocated to the backup BF. There-
fore, the FPR 𝐹𝐵 of the backup BF is supposed to be larger according
to Equ. (2). In this paper, we propose a framework to find the optimal
memory allocation for the learning model and backup BF.

2.2 Problem Definition
Given a memory budget 𝜇, the memory allocation problem on LBFs
aims to find the optimal combination of learning model memory
𝜇∗
𝑀

and BF memory 𝜇∗
𝐵
, such that the overall FPR 𝐹𝐿 of the LBF is

minimized, i.e.,

𝑚𝑖𝑛 𝐹𝐿 𝑠 .𝑡 . 𝜇∗𝑀 + 𝜇
∗
𝐵 ≤ 𝜇, 𝜇∗𝑀 ≥ 0, 𝜇∗𝐵 ≥ 0 (4)

3 LOOP-BASED MEMORY ALLOCATION
To construct a Learned Bloom Filter, we need to determine the
model structure and the threshold. In this section, we propose the
basic Loop-Basedmemory allocationmethod consisting of𝛼 epochs,
as shown in Fig. 4. In each epoch, there are two main steps, i.e.,
Model Training and Threshold Selection. In Model Training step, we
construct a learning model and train it to fit the training dataset.
In Threshold Selection step, we select the optimal threshold with
the minimum FPR in this epoch, forming the locally best learning
model. After 𝛼 epochs, we select the globally best learning model
among all locally best learning models.
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Figure 4: Framework of Loop-Based Memory Allocation.

3.1 Model Training
Model Training involves two main tasks: training a model that
can efficiently and effectively perform binary classification, and
adjusting the memory proportion of the learning model during the
training process. In this step, we focus on the choice of learning
model and how memory is allocated between different epochs.
Choice of Learning Model. A good learning model in an LBF
should meet the following requirements. First, the model should
be lightweight enough, i.e., it takes up little memory. Second, the
accuracy of the learning model should be as high as possible for
binary classification tasks. Third, the model should enlarge itself as
epochs increase to avoid retraining it from scratch.

As a light-weight gradient boosting decision tree model, Light-
GBM [21] can meet all of the three requirements. First, LightGBM
applies a histogram algorithm, binning continuous feature values
into discrete bins to reduce its memory consumption. Second, the
structure of LightGBM ensures its good ability to handle the clas-
sification tasks. Third, its gradient boosting algorithm counts in
studying the residual to enlarge itself, which makes full use of the
knowledge of the last epoch without retraining the model from
scratch. Therefore, we choose LightGBM as our default model.
Memory Variation Between Epochs. Next, we introduce how
we alter the memory consumption of LightGBM between epochs.
In each iteration, LightGBM trains a new decision tree and then
inserts it into the model. More exactly, during training, LightGBM
splits the best nodes that it found with the constraints of maximum
tree depth. The growing number of nodes and trees makes the size
of the model larger, and choosing the leaf nodes that decrease the
loss function most makes sure that we get the best LightGBMmodel.
Hence, as the iteration goes on, the size of the learning model gets
larger, and we can enumerate the possible memory allocations.

3.2 Threshold Selection
In each epoch 𝑖 , after performing Model Training step, we obtain
a learning model𝑀𝑜𝑑𝑒𝑙𝑖 that well fits the training dataset. In this
step, we need to find an optimal threshold that bridges the learning
model and the backup BF, determining which items need to be
inserted into the backup BF. To achieve this, one intuitive idea is to
evenly partition the prediction score space into several regions, and
then select from them a threshold that yields the best performance.
However, we find this method leads to a poor performance. The rea-
son could be that the distribution of prediction scores is extremely
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𝑗
≤ 𝜏𝑖

𝑗+1 for 1 ≤ 𝑗 < 𝑛).

uneven. If we select a threshold from the evenly-partitioned regions,
we may miss many candidates in the dense regions.

To this end, we propose to select the threshold as follows. For
each item 𝑗 in the dataset,𝑀𝑜𝑑𝑒𝑙𝑖 can produce a prediction score 𝜏𝑖

𝑗
.

We select from {𝜏𝑖1, 𝜏
𝑖
2, ..., 𝜏

𝑖
𝑛} the best threshold 𝜏𝑖 that contributes

to the minimum FPR 𝐹 𝑖
𝐿
of the LBF, where 𝑛 is the total number

of items in the training dataset. For each threshold 𝜏𝑖
𝑗
, it requires

to calculate the FPR 𝐹 𝑖
𝐿,𝑗

of the LBF. The intuitive method is to
insert all items in the dataset into the LBF, and then measure what
the FPR is. However, this method may suffer from two drawbacks.
First, for any item that is judged not to exist by 𝑀𝑜𝑑𝑒𝑙𝑖 , it would
be actually inserted into the backup BF, which is relatively time-
consuming. Second, there are 𝑛 possible threshold candidates, and
for each candidate, we might insert at most 𝑛 items into the backup
BF, leading to a time complexity of O(𝑛2).

To accelerate the FPR calculation, we make two optimizations.
Opt I: We do not actually insert the items into the backup BF. As
depicted in Equ. (3), given a threshold 𝜏𝑖

𝑗
in epoch 𝑖 , to obtain the

FPR 𝐹 𝑖
𝐿,𝑗

of the LBF, we only need to know the FPR 𝐹 𝑖
𝑀

caused
by 𝑀𝑜𝑑𝑒𝑙𝑖 and the FPR 𝐹 𝑖

𝐵
caused by the backup BF. 𝐹 𝑖

𝑀
can be

calculated by 𝑛𝑖
𝑀
/𝑛𝑛𝑒𝑔 , where 𝑛𝑖𝑀 is the number of negative items

but𝑀𝑜𝑑𝑒𝑙𝑖 regards them as positive, and 𝑛𝑛𝑒𝑔 is the total number
of negative items in the training dataset. 𝐹 𝑖

𝐵
can be calculated by

Equ. (2) if we know the number 𝑛𝑖
𝐵
of items inserted into the backup

BF and the memory size 𝜇𝑖
𝐵
of the backup BF. 𝜇𝑖

𝐵
is assigned by

𝜇 − 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝑖 ), where 𝜇 and 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝑖 ) are the memory bud-
get and the memory occupation of𝑀𝑜𝑑𝑒𝑙𝑖 , respectively. Opt II: We
propose a sorting-based method to calculate 𝑛𝑖

𝑀
and 𝑛𝑖

𝐵
efficiently.

First, we sort the items in the training dataset ascendingly by the
prediction scores. Then, we traverse the threshold candidates from
large to small. Fig. 5 gives an example. Suppose 𝜏𝑖

𝑗
is the current

candidate for checking.𝑛𝑖
𝐵
is the number of items labeled as existing

whose prediction scores are smaller than or equal to 𝜏𝑖
𝑗
, while 𝑛𝑖

𝑀
is

the number of items labeled as not existing whose prediction scores
are greater than 𝜏𝑖

𝑗
. Since the candidates are already sorted, the

results of 𝜏𝑖
𝑗
can be fully utilized for the results of 𝜏𝑖

𝑗−1, which ac-
celerates the overall calculation. As shown in Fig. 5, when checking
𝜏𝑖
𝑗
, as the label of the item 𝐼 𝑖

𝑗+1 is 0, we can remain 𝑛𝑖
𝐵
unchanged

and increase 𝑛𝑖
𝑀

by 1 based on the results of 𝜏𝑖
𝑗+1. Similarly, when

checking 𝜏𝑖
𝑗−1, as the label of the item 𝐼 𝑖

𝑗
is 1, we can maintain 𝑛𝑖

𝑀

unchanged and decrease 𝑛𝑖
𝐵
by 1 based on the results of 𝜏𝑖

𝑗
.

3.3 Summary
Algorithm 1 presents the pseudo-code of Loop-Based Memory Al-
location. Lines 1-3 are the initialization process, where we start
with a pure classical BF without any learning model. 𝜇∗

𝑀
and 𝜇∗

𝐵

record the currently best memory sizes for the learning model and
the backup BF, respectively, and 𝐹 ∗

𝐿
is the currently smallest FPR.

Lines 4-15 are epoch loops, each of which consists of two steps:
Model Training (Lines 5-6) and Threshold Selection (Lines 7-15). Note
that in the Model Training step, if the size of𝑀𝑜𝑑𝑒𝑙𝑖 is larger than
the budget 𝜇, we break the loop (Line 6) and return the final result
(Line 16). In Threshold Selection step, we start 𝑗 in (𝑛 − 1) instead of
in 𝑛 (Line 9), because 𝑗 = 𝑛 is equivalent to the case where we use
a pure classical BF.

Suppose the number of epochs is 𝛼 . As we need to sort the
prediction scores in each epoch, the time complexity of Algorithm 1
is O(𝛼 · 𝑛 · 𝑙𝑜𝑔𝑛). Besides, we need to record the prediction scores,
so its space complexity is O(𝑛).
Algorithm 1: Loop-Based Memory Allocation
Input: Training Dataset 𝐷 , Memory Budget 𝜇
Output: Best Memory Allocation (𝜇∗

𝑀
, 𝜇∗

𝐵
)

/* Initialization */

1 𝑛𝑛𝑒𝑔 ← |{𝐼 ∈ 𝐷 |𝐼 .𝐿𝑎𝑏𝑒𝑙 = 0} |; 𝑛0
𝐵
← |{𝐼 ∈ 𝐷 |𝐼 .𝐿𝑎𝑏𝑒𝑙 = 1} |;

2 𝜇∗
𝑀
← 0; 𝜇∗

𝐵
← 𝜇; 𝑛 ← |𝐷 |;

3 𝐹 ∗
𝐿
← (0.5)𝜇

∗
𝐵
·𝑙𝑛2/𝑛0

𝐵 ; // Equ. (2), the FPR of a pure BF

4 while true do // Suppose the number of current epoch is 𝑖

/* Model Training */

5 Train a learning model𝑀𝑜𝑑𝑒𝑙𝑖 that fits 𝐷 based on𝑀𝑜𝑑𝑒𝑙𝑖−1;
6 if 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝑖 ) > 𝜇 then break;

/* Threshold Selection */

7 Get and sort the prediction scores {𝜏𝑖1, 𝜏𝑖2, ..., 𝜏𝑖𝑛 } of items in 𝐷 ;
8 𝜇𝑖

𝐵
← 𝜇 − 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝑖 ) ; 𝑛𝑖

𝑀
← 0; 𝑛𝑖

𝐵
← 𝑛0

𝐵
;

9 for 𝑗 ← (𝑛 − 1) to 1 do
10 if 𝐼 𝑖

𝑗+1 .𝐿𝑎𝑏𝑒𝑙 = 0 then 𝑛𝑖
𝑀
+ + ;

11 else 𝑛𝑖
𝐵
− − ;

12 𝐹 𝑖
𝑀
← 𝑛𝑖

𝑀
/𝑛𝑛𝑒𝑔 ; 𝐹 𝑖𝐵 ← (0.5)

𝜇𝑖
𝐵
·𝑙𝑛2/𝑛𝑖

𝐵 ; // Equ. (2)

13 𝐹 𝑖
𝐿
← 𝐹 𝑖

𝑀
+ (1 − 𝐹 𝑖

𝑀
) · 𝐹 𝑖

𝐵
; // Equ. (3)

14 if 𝐹 𝑖
𝐿
< 𝐹 ∗

𝐿
then

15 𝐹 ∗
𝐿
← 𝐹 𝑖

𝐿
; 𝜇∗

𝑀
← 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝑖 ) ; 𝜇∗

𝐵
← 𝜇𝑖

𝐵
;

16 return (𝜇∗
𝑀
, 𝜇∗

𝐵
) ;

4 BAYESIAN-BASED MEMORY ALLOCATION
4.1 Motivation
Loop-Based memory allocation method can effectively find the
optimal allocation strategy under the memory budget 𝜇. However,
if 𝜇 is large enough, there might be excessive epochs, which requires
too much time to obtain a good memory allocation strategy. Note
that the construction efficiency of LBF is vital for some critical
scenarios, e.g., in database systems, if the datasets are updated, we
need to rebuild the LBF efficiently to guarantee the correctness of
the query results and the availability of the systems.

The memory allocation problem of LBFs can be also deemed
as a knob tuning problem. Therefore, we can leverage the knob
tuning methods for this problem. Given a memory budget 𝜇, we
try to find a proportion 𝜂 = 𝜇∗

𝑀
/𝜇 for the learning model that

minimizes the FPR of the LBF, where 𝜂 ∈ [0, 1] is a continuous
variable. However, as described in Section 1, it is challenging to
train a learning model that occupies exactly a given amount of
memory. To this end, instead of finding a good proportion 𝜂, we
propose to search for the optimal number of epochs in Algorithm 1.
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Figure 6: Bayesian-Based Memory Allocation.

4.2 Intuitive Method
Bayesian Optimizer [49] is widely-used in knob tuning problems.
Compared with reinforcement learning-based methods and deep
learning-based methods [50], it requires fewer samples to efficiently
achieve high-quality knob settings, which makes it particularly
suitable for the scenarios where the knob number is small. In our
problem, there is only one parameter (i.e., 𝛼) for tuning. Besides, it
requires fast prediction and small memory occupation. Therefore,
we adopt Bayesian Optimizer as our knob tuning method.

Fig. 6(a) presents the intuitive method, which is an iterative
process. First, Bayesian Optimizer predicts a number 𝛼 𝑗 of epochs
based on the current observation set. Then, we launch a Loop-Based
Memory Allocation process with 𝛼 𝑗 epochs, obtaining the globally
minimum FPR 𝐹 ∗

𝐿,𝑗
. Third, we add (𝛼 𝑗 , 𝐹 ∗𝐿,𝑗 ) to the observation set.

The three steps are repeated until the maximum number 𝑁𝐵𝑂 of
iterations is reached. Finally, the number 𝛼∗ corresponding to the
minimum FPR 𝐹 ∗

𝐿
in the observation set is returned1.

4.3 Proposed Method
There are two shortcomings in the intuitive method. First, for each
predicted 𝛼 𝑗 , the Loop-Based Memory Allocation method would
trigger 𝛼 𝑗 epochs from scratch, which is still time-consuming. Sec-
ond, in each epoch, we need to perform the Threshold Selection
step, in which many costly predictions and an expensive sorting
operation are executed.

To address these issues, we propose a novel Bayesian-Based
memory allocation method, as shown in Fig. 6(b). Compared with
the intuitive method shown in Fig. 6(a), there are three main opti-
mizations.Opt I: Wemake full use of the historical model structures.
Note that we adopt LightGBM as the learning model, so𝑀𝑜𝑑𝑒𝑙𝑖+1

is obtained by simply adding a new decision tree to 𝑀𝑜𝑑𝑒𝑙𝑖 , but
keeping the former 𝑖 decision trees unchanged. Therefore, we cache
the model structure𝑀𝑜𝑑𝑒𝑙𝛼𝑚𝑎𝑥 obtained by the historically max-
imum number 𝛼𝑚𝑎𝑥 of epochs. Suppose in the current iteration,
the Bayesian Optimizer recommends a epoch number of 𝛼 𝑗 . If
𝛼 𝑗 < 𝛼𝑚𝑎𝑥 , we can obtain 𝑀𝑜𝑑𝑒𝑙𝛼 𝑗 by simply removing the last
(𝛼𝑚𝑎𝑥 −𝛼 𝑗 ) decision trees in𝑀𝑜𝑑𝑒𝑙𝛼𝑚𝑎𝑥 , i.e., the red dashed arrows
in Fig 6(b). If 𝛼 𝑗 > 𝛼𝑚𝑎𝑥 , we first get𝑀𝑜𝑑𝑒𝑙𝛼 𝑗 based on𝑀𝑜𝑑𝑒𝑙𝛼𝑚𝑎𝑥

through only (𝛼 𝑗 − 𝛼𝑚𝑎𝑥 ) epochs, and then replace 𝑀𝑜𝑑𝑒𝑙𝛼𝑚𝑎𝑥

with 𝑀𝑜𝑑𝑒𝑙𝛼 𝑗 , i.e., the blue dotted arrows in Fig 6(b). Opt II: We
skip some operations in some epochs. As shown in Fig 6(b), if

1In fact we return (𝜇∗
𝑀
, 𝜇∗

𝐵
) that can be uniquely determined by 𝛼∗ .

𝛼 𝑗 < 𝛼𝑚𝑎𝑥 , we only perform Threshold Selection step in epoch 𝛼 𝑗 .
If 𝛼 𝑗 > 𝛼𝑚𝑎𝑥 , we only perform Model Training step between epoch
(𝛼𝑚𝑎𝑥 + 1) and epoch (𝛼 𝑗 − 1). Opt III: We change the components
of an observation. We regard (𝛼 𝑗 , 𝐹

𝛼 𝑗

𝐿
) as the new observation,

where 𝐹𝛼 𝑗

𝐿
is the FPR of the LBF built in epoch 𝛼 𝑗 . This is because

we could not obtain the global minimum FPR if we employ the
previous two optimizations. However, as our experiments show,
this change can also lead us to the best memory allocation strategy.

Algorithm 2: Bayesian-Based Memory Allocation
Input: Training Dataset 𝐷 , Memory Budget 𝜇, Iteration Num 𝑁𝐵𝑂

Output: Best Memory Allocation (𝜇∗
𝑀
, 𝜇∗

𝐵
)

/* Initialization */

1 𝑛𝑛𝑒𝑔 ← |{𝐼 ∈ 𝐷 |𝐼 .𝐿𝑎𝑏𝑒𝑙 = 0} |; 𝑛0
𝐵
← |{𝐼 ∈ 𝐷 |𝐼 .𝐿𝑎𝑏𝑒𝑙 = 1} |;

2 𝜇∗
𝑀
← 0; 𝜇∗

𝐵
← 𝜇; 𝑛 ← |𝐷 |; 𝐹 ∗

𝐿
← (0.5)𝜇

∗
𝐵
·𝑙𝑛2/𝑛0

𝐵 ; // Equ. (2)

3 𝛼𝑚𝑎𝑥 ← 0;𝑂𝑆 ← {(0, 𝐹 ∗
𝐿
) }; // Observation Set

4 for 𝑗 ← 1 to 𝑁𝐵𝑂 do // Bayesian Iteration
5 Predict 𝛼 𝑗 using Bayesian Optimizer based on𝑂𝐵;
6 if 𝛼 𝑗 > 𝛼𝑚𝑎𝑥 then
7 for 𝑖 ← (𝛼𝑚𝑎𝑥 + 1) to 𝛼 𝑗 do

/* Model Training */

8 Train a model𝑀𝑜𝑑𝑒𝑙𝑖 that fits 𝐷 based on𝑀𝑜𝑑𝑒𝑙𝑖−1;
9 if 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝑖 ) > 𝜇 then break;

10 𝛼𝑚𝑎𝑥 ← 𝑖;

11 Cache𝑀𝑜𝑑𝑒𝑙𝛼𝑚𝑎𝑥 ;
/* Threshold Selection */

12 Get 𝐹𝛼𝑚𝑎𝑥
𝐿

using Lines 7-13 in Algorithm 1;
13 if 𝐹𝛼𝑚𝑎𝑥

𝐿
< 𝐹 ∗

𝐿
then

14 𝐹 ∗
𝐿
← 𝐹

𝛼𝑚𝑎𝑥
𝐿

;
15 𝜇∗

𝑀
← 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝛼𝑚𝑎𝑥 ) ; 𝜇∗

𝐵
← 𝜇 − 𝜇∗

𝑀
;

16 Add (𝛼𝑚𝑎𝑥 , 𝐹
𝛼𝑚𝑎𝑥
𝐿

) to𝑂𝐵;

17 else if 𝛼 𝑗 < 𝛼𝑚𝑎𝑥 then
18 Obtain𝑀𝑜𝑑𝑒𝑙𝛼 𝑗 from𝑀𝑜𝑑𝑒𝑙𝛼𝑛𝑎𝑥 ;

/* Threshold Selection */

19 Get 𝐹𝛼 𝑗

𝐿
using Lines 7-13 in Algorithm 1;

20 if 𝐹
𝛼 𝑗

𝐿
< 𝐹 ∗

𝐿
then

21 𝐹 ∗
𝐿
← 𝐹

𝛼 𝑗

𝐿
; 𝜇∗

𝑀
← 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙𝛼 𝑗 ) ; 𝜇∗

𝐵
← 𝜇 − 𝜇∗

𝑀
;

22 Add (𝛼 𝑗 , 𝐹
𝛼 𝑗

𝐿
) to𝑂𝐵;

23 return (𝜇∗
𝑀
, 𝜇∗

𝐵
) ;

Algorithm 2 shows the pseudo-code of Bayesian-Based Memory
Allocation. In Lines 1-3, it is similar to that of Algorithm 1, but we
also initialize the current maximum number 𝛼𝑚𝑎𝑥 of recommended
epochs and the observation set 𝑂𝐵. Lines 4-22 show the iteration
process of Bayesian Optimizer, the logic of which is similar to that
of Fig. 6(b). Note that we do not consider the case where 𝛼 𝑗 =

𝛼𝑚𝑎𝑥 , since we can avoid this case through Bayesian Optimizer
according to the observation set. We need to train the model for
at most 𝛼𝑚𝑎𝑥 times, and perform the Threshold Selection step at
most 𝑁𝐵𝑂 times. Therefore, the time complexity of Algorithm 2 is
O(𝛼𝑚𝑎𝑥 + 𝑁𝐵𝑂 · 𝑛 · 𝑙𝑜𝑔𝑛), where 𝑛 is the number of items in the
training dataset. If we ignore the memory occupied by the cached
model (Algorithm 1 should also store one model for the next model
training), the space complexity of Algorithm 2 is the same as that
of Algorithm 1, i.e., O(𝑛).
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5 DISCUSSION
5.1 Hybrid of the Two Proposed Methods
Bayesian-Based method is efficient by avoiding many Threshold
Selection steps when the memory budget is relatively large. How-
ever, if the memory budget is too small, the additional computa-
tional overhead introduced by Bayesian Optimizer will exceed the
saved overhead, leading to a poorer performance than Loop-Based
method. To this end, we propose a hybrid method that combines the
strengths of both Loop-Based method and Bayesian-Based method.
The rationale is that we can already achieve a satisfactory memory
allocation strategy with few epochs (e.g., ≤ 5) using Loop-Based
method if the memory budget is small enough, so we do not need
the Bayesian Optimizer. Another advantage is that we can initialize
the observation set and the cached model with the results of the
Loop-Based method, which is helpful for Bayesian Optimizer.

Algorithm 3: Hybrid-Based Memory Allocation
Input: Training Dataset 𝐷 , Memory Budget 𝜇, Iteration Num 𝑁𝐵𝑂 ,

Maximum Epoch Num 𝑁𝐿𝐵 of Loop-Based Method
Output: Best Memory Allocation (𝜇∗

𝑀
, 𝜇∗

𝐵
)

1 Perform Loop-Based method with at most 𝑁𝐿𝐵 epochs;
2 if Loop-Based method has already reached memory budget 𝜇 then
3 return (𝜇∗

𝑀
, 𝜇∗

𝐵
) obtained from Loop-Based method;

4 𝛼𝑚𝑎𝑥 ← 𝑁𝐿𝐵 ;
5 Initialize𝑀𝑜𝑑𝑒𝑙𝛼𝑚𝑎𝑥 and𝑂𝑆 obtained from Loop-Based method;
6 Perform Bayesian-Based method with at most 𝑁𝐵𝑂 iterations;
7 return (𝜇∗

𝑀
, 𝜇∗

𝐵
) obtained from Bayesian-Based method;

Algorithm 3 shows the pseudo-code of Hybrid-Based Memory
Allocation, which is self-explanatory. In our paper, we set 𝑁𝐿𝐵 =

5. Since 𝑁𝐿𝐵 is usually small, i.e., the overhead of Loop-Based
method can be ignored, the time complexity and space complexity
of Algorithm 3 are the same as those of Algorithm 2.

5.2 Other Learning Model Structures
We use LightGBM as the default learning model, due to its light
weight and capacity for incremental growth across different epochs.
However, our framework is model-agnostic. For instance, our frame-
work operates by adding neurons to an Artificial Neural Network
(ANN) or decision trees to a Random Forest [4]. A performance
comparison across these model structures is presented in Section 6.

5.3 Gama on LBF Variants
Throughout this paper, wemainly describe our Gama framework on
the classical LBF. There are also other LBF variants [8, 35, 42], where
a learning model is followed by multiple BFs. The biggest difference
between these variants and the classical LBF is that there are multi-
ple thresholds to determine which BF should be inserted into for
the items. Therefore, for these variants, their model training steps
keep unchanged, while the Threshold Selection steps need to be
adjusted accordingly to find the best combination of the threshold
candidates. The paper [39] proposes a dynamic programming-based
method to find the best combination of thresholds efficiently. For
all the variants mentioned above, we have experimentally validated

the effectiveness and stability of Gama on them. Section 6.3 pro-
vides a detailed presentation of the experimental setup and results
for Gama on the LBF variants.

5.4 Limitation of Gama
Since LBFs do not support item deletions, Gama on LBFs can not
either. Besides, if the distribution of upcoming items is different
from their historical distribution, the performance of LBFs (along
with Gama) will deteriorate. All these limitations stem from the
intrinsic shortcomings of LBFs. One optional solution is to rebuild
the LBFs. Since Gama includes multiple strategies to accelerate the
reconstruction, these limitations motivate Gama better.

6 EVALUATIONS
6.1 Experimental Settings
Datasets. We assess the performance of our proposed framework
Gama using three real-world datasets: Celestial Objects Dataset
(COD) [25], Yelp [20] and URL [40]. Specifically, COD, derived from
the Sloan Digital Sky Survey (SDSS), comprises classifications of
celestial objects based on their optical and spectroscopic properties.
Yelp, containing user reviews of businesses, is used to analyze
consumer feedback and sentiment. URL comprises malicious and
benign URLs. The Yelp dataset we use is filtered to remove the
extremely sparse regions from the original dataset to reduce the
length of the encoding. All evaluations use the URL dataset by
default. Table 1 lists the number of samples.

Table 1: Information of Datasets

Dataset Yelp URL COD

# Positive Samples 384,602 223,088 2,498,077
# Negative Samples 249,886 428,118 2,980,291

Metrics.We evaluate the performance using two metrics: FPR
and construction time. FPR measures the performance of the LBF.
Construction time, on the other hand, assesses the efficiency of the
model in terms of the time required to build the data structure.

Settings. By default, we use LightGBM [21] as the learning
model and Gama uses Hybrid-Based Memory Allocation. The com-
parison method’s learning model is the optimal binary classification
model through a training process. The default learning model size
is set to 39KB, as specified in [39]. The total memory budget is
configured to range from 64KB to 320KB with an increment of
64KB. The remaining memory is allocated to the backup BF. The
experiments are conducted on servers equipped with a 4-core CPU,
128GB RAM, and 4T disk. All methods are implemented in Python
language with version 3.10. All source codes are published 2. Please
refer to the README documentation for comprehensive details
regarding the embeddings of the associated datasets.

We conduct Gama on LBF [24] and two variants Sandwich LBF
(abbreviated as SLBF) [35] and PLBF [39]. We refer to LBF opti-
mized by Gama as G-LBF, Sandwich LBF optimized by Gama as
G-SLBF, and PLBF optimized by Gama as G-PLBF. Although Ada-
BF [8] is an advanced LBF variant, its prohibitive construction time

2https://github.com/Spatio-Temporal-Lab/LBF-Gama

https://github.com/Spatio-Temporal-Lab/LBF-Gama
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Table 2: FPR Comparison (%)

Dataset Method Memory Budget

64KB 128KB 196KB 256KB 320KB

URL LBF 17.685 1.624 0.311 0.091 0.053
G-LBF 5.471 0.974 0.170 0.060 0.039

Yelp LBF 1.245 0.684 0.503 0.463 0.453
G-LBF 1.048 0.682 0.403 0.295 0.216

COD L BF 9.971 4.868 3.380 2.588 2.048
G-LBF 7.608 4.529 3.217 2.487 1.962

Table 3: Construction Time Comparison (s)

Dataset Method Memory Budget

64KB 128KB 196KB 256KB 320KB

URL LBF 0.534 0.661 0.768 0.869 0.952
G-LBF 0.790 1.754 2.544 2.707 3.076

Yelp LBF 7.318 7.465 7.666 7.759 7.875
G-LBF 7.069 9.707 12.135 13.027 13.983

COD LBF 7.968 8.094 8.108 8.323 8.653
G-LBF 7.877 12.261 13.195 17.748 22.102

(e.g., nearly 20 hours on the COD dataset) renders it impractical
for real-world applications. Given its structural similarities with
PLBF, we chose PLBF as the basis for our improvements. Regarding
the experimental construction, the original LBF variants are imple-
mented using open-source repositories 3,4, and the parameters are
also set to the default ones in the open source repositories.

6.2 Overall Performance Comparison
To verify the effectiveness of Gama, we use three datasets to com-
pare the FPRs of different variants of LBFs both before and after
optimization by Gama under different memory budgets. Table 2
and Table 3 show the FPR and construction time comparison of LBF
and G-LBF, respectively, from which we can find results below:

(1) Gama helps LBF in decreasing its FPRs in all circumstances.
In the best case for the URL dataset, G-LBF reduces the FPR from
17.685% to 5.471%, which is only 30.9% of the original LBF’s FPR.
This improvement stems from Gama’s ability to find the near op-
timal allocation strategy for different datasets and total memory
budgets, thereby enhancing the overall performance of the model.

(2) Gama achieves exponential reduction in FPR across the major-
ity of experimental scenarios. In rare cases where the improvement
margin appears relatively modest, this can be attributed to the fact
that the default 39KBmemory budget for the learningmodel already
represents a near-optimal configuration for those specific datasets
and total memory budget combinations. Notably, Gama demon-
strates consistently strong performance across all other scenarios.
These results substantiate two critical findings: the importance
of optimal memory allocation strategy and Gama’s exceptional
adaptability to diverse total memory budgets.

(3) It takes some extra construction time for Gama to find an
optimal memory allocation strategy. However, the construction

3https://github.com/atsukisato/FastPLBF/tree/main
4https://github.com/RaimondiD/LBF_ADABF_experiment
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Figure 7: Performance on LBF Variants.

time increases at a linear rate, which represents an acceptable trade-
off when compared to the exponential reduction in FPR. This is
particularly justified as the decreased FPR significantly reduces the
runtime overhead of the indexing structure.

Overall, Gama demonstrates its adaptability and reliability by
effectively optimizing memory allocation for LBF, consistently re-
ducing FPR across diverse real-world datasets and memory budgets
compared to the original LBF.

6.3 Performance on Different LBF variants
To demonstrate Gama’s extendability on different structures of LBF,
we conduct Gama on two classical LBF variants: SLBF adds a BF
before LBF to catch most negatives. PLBF divides the score space
into several regions and assigns backup BFs with different FPRs to
each region. Here we set the memory budget to 192KB. From the
experimental result shown in Fig. 7, we can observe that: 1) Gama
helps LBF variants in decreasing their FPRs in all circumstances.
2) The trade-off between FPR and construction time observed in
Gama on the original LBF still holds for the LBF variants. 3) G-
PLBF generally has a lower FPR than G-SLBF, but this comes with
a longer construction time. In summary, This experiment shows
Gama’s robustness in different structure of LBF’s variants.

6.4 Performance on Different Classifiers.
To demonstrate Gama’s versatility, we evaluate its performance
with Random Forests [4] and ANN under a memory budget of
200KB. For ANN, Gama adjusts the memory allocation ratios by
changing the number of neurons, and for Random Forests (abbrevi-
ated as RF), Gama changes the number of decision trees. As shown
in Fig. 8, we can observe that:

(1) Regardless of the specific learning model used, the overall
FPR of an LBF fluctuates significantly with the proportion of the
total memory budget allocated to it. As the number of trees and
neurons are varied, the LBF’s FPR ranges from 0.0013 to 0.0085
and from 0.02 to 0.11, respectively. This demonstrates that effective
memory allocation is crucial for LBFs, regardless of the underlying
learning model.

(2) Gama can provide the near lowest FPR with different learn-
ing models, showing its wide applicability and effectiveness. The
G-LBF, when configured with a RF model, achieves a minimum
FPR of 0.0006, a result determined from the performance trend
as the number of trees is varied. While the ANN-based LBF does
not achieve the absolute minimum FPR, it attains the second-best
performance with a value of 0.027. This demonstrates the success
of our Bayesian-Based method in achieving a deliberate balance
between the construction time and a highly competitive FPR.

https://github.com/atsukisato/FastPLBF/tree/main
https://github.com/RaimondiD/LBF_ADABF_experiment
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Figure 8: Performance on Different Classifiers.
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Figure 9: Performance on Different 𝑁𝐵𝑂 .

6.5 Parameter Study on Gama.
As mentioned in Algorithm 2, 𝑁𝐵𝑂 , the number of iterations for
Bayesian Optimization, plays a crucial role in the performance of
the Bayesian Optimization process itself. We evaluate the perfor-
mance of Gama under varying values of 𝑁𝐵𝑂 to analyze how the
hyper-parameter of Bayesian Optimization might influence Gama’s
performance. We adopt Bayesian-Based memory allocation in this
experiment because the Hybrid-Based approach sometimes finds
the optimal memory allocation during the Loop-Based phase, which
diminishes the effectiveness of the Bayesian method. As a result,
the role of 𝑁𝐵𝑂 is not well reflected. In this experiment, we set the
memory budget to the maximum value in Section 6.2, i.e., 320KB.

Figure 9 illustrates the performance of Gama using the Bayesian-
Based Memory Allocation method across different datasets with
varying values of 𝑁𝐵𝑂 . The legend indicates 𝑁𝐵𝑂 values ranging
from 5 to 25, with an increment of 5. As 𝑁𝐵𝑂 increases, the FPR
shows a slight decrease, but it remains relatively stable overall,
while the construction time shows a slight increase. The stable
FPR demonstrates Gama’s ability to maintain strong performance
despite changes in relevant hyper-parameters. Meanwhile, the in-
creased number of iterations results in more frequent threshold se-
lection processes. Since the time complexity of threshold selection is
relatively low, it does not significantly impact Gama’s performance
in terms of construction time. In summary, Gama demonstrates
robust performance across varying number of iterations.

6.6 Ablation Study on Gama
We conducted an ablation study to demonstrate that Gama effec-
tively integrates the Loop-Based method and the Bayesian-Based
method, achieving a comparable FPR while significantly reducing
construction time. The fixed 0.1 allocation ratio used in our evalua-
tion was empirically determined to offer the best balance, based on
preliminary tests sweeping from 0.1 to 0.9 on a 64KB budget.

Figure 10 shows the experimental results, where LBF+Loop
denotes the LBF optimized using the Loop-Based method, while
LBF+Bayes denotes the LBF optimized using the Bayesian-Based
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Figure 11: Performance on Different Tuning Methods.

method. In terms of the trends, as the total memory budget in-
creases, the FPR for all methods decreases, as shown in Fig. 10(a).
However, Gama consistently achieves the lowest FPR values across
all memory budgets. Specifically, in the optimal scenario with a
total memory budget of 256KB, the FPR for LBF is approximately
0.0011, while G-LBF further reduces the FPR to around 0.00059,
roughly half of LBF’s FPR. These results demonstrate the signifi-
cant advantage of Gama in reducing FPRs. Regarding construction
time, as shown in Fig. 10(b), the curves for all methods exhibit
an increasing trend with the total memory budget. Among them,
Loop-Based method performs better under low memory budgets,
while the Bayesian-Based method is more efficient with higher
memory budgets. Gama, however, combines the strengths of both
Loop and Bayesian methods. As a result, Gama achieves low FPRs
and maintains low construction times under all memory budgets,
showcasing its efficiency and robustness.

In summary, the results demonstrate that Gama is highly ef-
fective, significantly reducing the FPR while maintaining efficient
construction time. This makes Gama an ideal choice for scenarios
requiring both FPR and construction efficiency.

6.7 Performance on Different Tuning Methods.
We evaluate different tuning algorithms for LBFs. As shown in
Fig. 11, we compare Genetic Algorithm (GA) [19] and Bayesian
Optimization across LBF and PLBF. Given their comparable FPRs,
the two methods are compared solely on construction time.

In this experiment, we use larger memory budgets than in pre-
vious tests to better highlight the time complexity of the tuning
algorithms. As shown in both Fig. 11(a) and Fig. 11(b), Bayesian
optimization (LBF+Bayes and PLBF+Bayes) outperforms Genetic
Algorithm (LBF+GA and PLBF+GA) in terms of construction time,
especially as the memory budget increases. LBFs tuned with GA
exhibit a more rapid increase in construction time than those tuned
with Bayesian optimization, primarily due to the inherent compu-
tational overhead of GA’s evolutionary process.

In summary, this experiment demonstrates that Bayesian opti-
mization is more effective for memory allocation on LBFs.
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Figure 12: Performance on Database Query.

6.8 Performance on Database Query.
To evaluate the query acceleration performance of Gama, we use the
total number of database queries as the primary metric. This choice
is motivated by the need to isolate the filter’s effectiveness from
confounding factors, such as buffer pool state, which can introduce
variability into execution times. Specifically, the query process
begins with the pre-filter determining the potential existence of a
query URL. A full database lookup proceeds only if the filter returns
a positive match; otherwise, the database query is skipped. Figure 12
illustrates the reduction in the number of executed database queries
when augmenting LBF with Gama.

Figure 12(a) compares the query counts of G-LBF and LBF under
varying memory budgets. As the memory budget decreases from
320KB to 64KB, the query count for G-LBF consistently remains
lower than that of LBF. At the most constrained budget of 64KB,
LBF requires 24.4% more query executions than G-LBF. To assess
performance robustness, we investigated the effect of varying the
positive-query ratio, as depicted in Fig. 12(b). While a higher pro-
portion of positive queries predictably increases the query load for
both methods, G-LBF’s outperformance of LBF remains constant.

In conclusion, Gama provides a robust enhancement to LBF’s
query acceleration capabilities, maintaining its effectiveness across
a wide spectrum of memory budgets and positive-query ratios.

7 RELATEDWORKS
Since Kraska et al. [24] proposed the LBF as a data structure for
indexing problems, subsequent research has pursued two main
optimization strategies: modifying its core architecture (e.g., the
number or types of BFs), and tuning its operational parameters.
Our Gama framework falls into the latter approach.

7.1 Data Structure Optimization of LBF
Since LBF is formed by the combination of a learning model and
a BF, most researchers optimize it from a data structure view. A
widely used approach is to increase the number of BFs in the LBF to
take full advantage of the learning model. Sandwich LBF [35] intro-
duces an initial BF before the learning model to handle some easy
samples, preserving the learning model for more complex queries.
Subsequent studies question the poor usage of the predicted proba-
bility scores of the learning model in initial approaches, and apply
multiple backup BFs to distinguish different score ranges for further
optimization. Ada-BF [8] divides the score spectrum lower than the
threshold into distinct regions, each of which is associated with its
own BF. Hence, it can tune the number of hash functions differ-
ently in different regions to adjust the FPR adaptively. Furthermore,
PLBF [42] partitions the entire score space into multiple regions

and assigns a separate backup BF with different FPRs to each region.
When a query item arrives, the learning model utilizes its region
and the corresponding backup BF to determine whether it exists.

Reflecting its growing recognition as an index structure, much
research has focused on extending LBF’s applicability by modifying
its core components. Li [31] and Chen [7] extend LBF to handle
multi-key queries, which contain a value-interaction-based multi-
key classifier and a multi-key BF. To ensure the performance of LBF
in streaming scenarios, Liu proposes Stable LBFs [32], which ad-
dresses this issue by combining the classifier with updatable backup
filters. Stable LBFs introduce a similar level of FPR but save more
space. To address the challenges in the approximate membership
query on data streams, Learned Cuckoo Filters (LCF) [41] adaptively
maintains cuckoo filters with the assistance of a well-trained oracle
that learns the frequency feature of the data within the stream.
Furthermore, LBF for large-scale membership query [47], spatial
data [46], and incremental workloads [2] have also been introduced
with specially designed learning models and structures.

7.2 Parameter Optimization of LBF
Alongside the proliferation of new LBF architectures, recent works
have increasingly focused on parameter optimization to enhance
performance and construction efficiency. Malchiodi et. al. [33, 34]
summarize an experimental framework to guide users in selecting
between BF or LBF and the specific parameters of LBF. Dai et al. [9]
demonstrate the necessity of parameter tuning for the learning
models in LBF by testing the performance of different learning
models in Ada-BF and PLBF under various parameters. As PLBF has
an extremely slow construction speed, Sato proposes fast PLBF [39],
which can be constructed much faster than PLBF by omitting the
redundant construction of the Dynamic Programming tables.

As a parameter optimization, the Gama framework we proposed
formalizes an updated LBF memory allocation problem and finds
a near-optimal memory allocation with acceptable time overhead,
significantly reducing the FPR of LBFs.

8 CONCLUSION
This paper proposes an effective general adaptive memory allo-
cation framework Gama for LBFs. In particular, Gama consists of
two effective memory allocation strategies: Loop-Based approach
ensures precise memory allocation and is well-suited for scenarios
with tight memory constraints, while Bayesian-Based method ex-
cels at exploring configurations efficiently under larger memory
budgets. Building on these two methods, we further introduce a
hybrid approach that combines their strengths and performs well
under almost all memory constraints. Extensive experiments on
three large-scale datasets validate the effectiveness of our frame-
work, Gama, achieving a best-case FPR reduction of 69%.
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