
Region Profile Enhanced Urban Spatio-Temporal Prediction via
Adaptive Meta-Learning

Jie Chen
Shanghai University
Shanghai, China

chenjie_cs@shu.edu.cn

Tong Liu∗
Shanghai University
Shanghai, China

tong_liu@shu.edu.cn

Ruiyuan Li
Chongqing University
Chongqing, China

ruiyuan.li@cqu.edu.cn

ABSTRACT
Urban spatio-temporal (ST) prediction plays a crucial role in smart
city construction. Due to the high cost of ST data collection, improv-
ing ST prediction in a lack of data is significant. For this purpose,
existing meta-learning methods have been demonstrated powerful
by learning an initial network from training tasks and adjusting to
target tasks with limited data. However, such shared knowledge
from a set of tasks may contain irrelevant noise due to the gap of
region-varying ST dynamics, resulting in the negative transfer issue.
As a revelation of regional functional patterns, region profiles give
rise to the diversity of ST dynamics. Thus, we design a novel adap-
tive meta-optimized model MetaRSTP, which conducts the initial
prediction model in a finer-granularity of region level with region
profiles as semantic evidence. To enhance the expressiveness of
profiles, we firstly build a semantic alignment space to explore the
inter-view co-semantics. Fusing it with view-specific uniqueness,
the multi-view region profiles can be better applied in urban tasks.
Then, a regional bias generator derives non-shared parameters in
terms of profiles, which alleviates the divergence among regions.
We set a new meta-learning strategy as initialize the network with
fixed generalizable parameters and region-adaptive bias, thus en-
hancing the personalized prediction performance even in few-shot
scenarios. Extensive experiments on real-world datasets illustrate
the effectiveness of our MetaRSTP and our learned region profiles.
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Figure 1: A motivation example : various region profiles lead
to the diversity of ST dynamics but with shared characteris-
tics of morning/evening peak.

1 INTRODUCTION
The fast advances in urban sensing technology and mobile com-
puting have significantly facilitated the construction of intelligent
cities. Urban ST prediction, one of the most prominent smart urban
services, has enabled multi-domain applications such as trajectory
prediction [24], route time estimation [4], and origin-destination
demand prediction [31]. An accurate ST prediction system plays a
crucial role in improving service efficiency, giving early warnings
for emergency and ultimately providing insights for policymaking.

Existing hybrid deep learning models [3, 11, 12, 17] achieve
encouraging results in ST prediction by mining non-linear ST cor-
relations accurately. Unluckily, the superior performance of them is
conditioned on large-scale training data which are probably inacces-
sible for sensor-scarce regions in real-world applications. Currently,
advanced meta-learning methods [18, 26, 34] have been utilized
to solve ST prediction tasks in few-shot scenarios, which learn a
shared initial network from all tasks and fine-tune the network for
a target task with limited data. To better transfer shared knowledge
across similar tasks, task-clustering [4, 24, 28] is proposed to guide
the initial network in a fine granularity of category level.

Nonetheless, a common pitfall is that existing meta-learning
methods still fail to thoroughly avoid the risk of negative transfer
due to the great differences among regions. As shown in Figure 1,
for two different regions, it is possible that their observed dynamics
is almost consistent in the beginning (e.g. before the dawn) but
show totally different follow-up variation trends. Due to the similar
observed data distribution, their ST dynamics are modeled in the
same way even with the clustering meta strategy, which will result
in inaccurate results for the future prediction.

To improve the prediction performance for overall regions, an
intuitive idea is to build an effective model for each of them individ-
ually. Region profile, a unified representation uncovering the func-
tionality and properties of an urban space, turn out to be effective
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in urban-related tasks [22, 29]. It is thus an excellent opportunity
for few-shot ST prediction as well. In this paper, we aim to inves-
tigate adaptive prediction model in a finer-granularity of region
level, simultaneously exploring model’s generalization capability
in few-shot scenarios. However, there exists two challenges:

• How to attain comprehensive region profileswhich can
serve as reliable semantic evidence in ST prediction? A
practicable region profile requires multi-view representation
learning for its various types of features. In a region, besides a
simple combination of multi-views [7, 32], the possible inter-
view interactions are complex to measure. For example, a
downtown area shown in Figure 2(b) includes certain point-
of-interest (POI) types such as malls and bars, as well as
large-scale flows from certain regions, suggesting the latent
semantic constraint within views. However, a residence zone
with the same mobility features contains discriminate POIs
such as residential buildings, which can better describe its
function. The degree of semantic relevance among views
affects the revelation of region profiles.
• How to devise a meta-learning strategy which derives
region-adaptive initial networks in few-shot scenar-
ios? Existing meta-learning methods [18, 24, 26, 28] learn a
global or clustered shared initial network, which may cause
uncertain noise for some regions. A fact is that varied region
profiles shed light on the diversity of ST dynamics, as a down-
town area 𝑟1 presents greater fluctuation different from a
residence zone 𝑟2. To model such diversity, [15, 16] generate
the weights of model based on regional geo-attributes, but
may result in task-overfitting in few-shot situation. Actually,
regions with their own specific ST dynamics may also obey
the common trends such as the morning/evening peak [27].
Considering both generic regularity to fit few-shot scenar-
ios and attached region-specific features for region-adaptive
prediction remains unexplored.

To the end, we propose MetaRSTP (Meta-optimized Model for
Region-adaptive Spatio-Temporal Prediction), an adaptive meta-
learning framework which integrates regional multi-view profiles
to enhance model’s performance in few-shot scenarios. The model
contains two modules for two challenges. For challenge (1), we
adopt a joint representation learning module to combine and align
multi-view embeddings in a deep cooperation manner. With fea-
tures from mobility view and geospatial view, a semantic alignment
space is designed to preserve the co-semantic embedding under the
effect of semantic constraints. With three types of embeddings in-
cluding uniqueness and co-semantics, a cross-view attention fusion
further enables the robustness of final multi-view region represen-
tation. For challenge (2), we initialize the region-adaptive network
via a combination of a shared initialization, and a weighted region-
specific bias from a regional bias generator with the region profiles
as input. The former is to keep the network’s generalization ability
for few-shot task, and the latter is to avoid being affected by the
divergence of other regions. Through the bi-level optimization of
meta-learning, the shared initialization will contain the general ST
characteristics among all the regions, while the regional bias gen-
erator will bridge the inherent correlations between region profiles
and ST dynamics. Finally, the prediction network for each region

can perform in region-level granularity with reliable region profiles
to offer more interpretability. Finally, the main contributions of our
work are concluded as follows:
• We propose a novel deep meta-learned model MetaRSTP for
region-adaptive ST prediction in a finer granularity, which
is the first to integrate multi-view region profiles to alleviate
the negative transfer issue in few-shot scenarios.
• We study the multi-view urban region profiling problem
by building the semantic alignment space and cross-view
fusion amongmultiple views, which can function as semantic
support for multi-domain urban tasks.
• Extensive experiments and case study validate the effective-
ness of our MetaRSTP and learned region profiles.

2 RELATEDWORK
2.1 Region Profile Encoding
Region profile encoding aims to acquire versatile region represen-
tations, which reveals regions’ functional property so that can be
applied to multiple urban tasks. Early works focus on single-view
study in terms of mobility data [6]. A popular scheme is to ex-
tract embeddings from flow connectivity graphs [21–23]. Recently,
multi-view data [14] of mobility and geospatial data has been fur-
ther exploited due to their more comprehensive expressiveness
for region profiling. Along this line, some works adopt multi-view
fusion methods, which learn view-specific embeddings separately
and then fuse them jointly by concatenation [7, 32] or weighted at-
tention summation [30]. Another works [29] attempt to propagate
semantic information across multi-views based on the assumption
that there exist strong constraints among distinct views.

However, there are no works explicitly modeling the inter-view
cooperation, which makes the complex correlations among multi-
views not fully exploited. Instead, we build a semantic alignment
space to get co-semantic embeddings, and further fuse it with single-
view features to ensure the effects of view-specific uniqueness.

2.2 Meta-Learning for ST Prediction
Meta-learning [5], a task-level learning paradigm, aims to learn the
general knowledge from a set of training tasks to rapidly adapt to
target tasks. As a classic optimization-based meta-learning algo-
rithm, model-agnostic meta-learning (MAML) [5] has been widely
used in various urban tasks. For example, MetaST [26] utilizes data
from multiple source regions to enable the stable transfer in target
regions for traffic prediction. However, the learned same initial net-
work from MAML may cause sub-optimal results for some of tasks
[10]. To alleviate the possible negative noise from irrelevant tasks,
existing works [4, 24, 28] turn to adopt a task-clustering strategy.
For instance, to conduct efficient POI recommendation, MetaPTP
[24] group training users with similar trajectories in a category of
certain preferences, thus offering cluster-aware initial networks for
new users who belong to a certain category.

Inspired by the above works, we proceed to design a region-
adaptive prediction network in a finer granularity so as to overcome
the negative transfer issue. Besides a fixed sharing parameter with
generalization ability, we propose a regional bias generator which
contributes to bridging the inherent correlations between region
profiles and corresponding ST dynamics with better interpretability.
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3 PRELIMINARY
3.1 Problem Formulation
Following previous works [22, 30], a research city is divided into
𝑁𝑅 disjoint regions, denoted as 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑁𝑅

}. Two views are
characterized for region profile learning. Afterwards, we present
the formulation of region profile enhanced ST prediction problem.

Definition 1 (Inter-Region Mobility View). The mobility
view is featured as a set of origin-destination (OD) region pairs
𝑀 = {(𝑟𝑜 , 𝑟𝑑 )}, which reveals the inter-region interactions. We
compute the accessibility weight between 𝑟𝑖 , 𝑟 ′𝑗 ∈ 𝑅 as𝑤 (𝑟𝑖 , 𝑟 𝑗 ) =
| (𝑟𝑜 , 𝑟𝑑 ) ∈ 𝑀 |𝑟𝑜 = 𝑟𝑖 , 𝑟𝑑 = 𝑟 𝑗 |, where | · | counts the co-occurance
of a trip. Thus for region 𝑟𝑖 , its OD contexts are described by the
source distribution 𝑝𝑜 (𝑟𝑘 |𝑟𝑖 ) and destination distribution 𝑝𝑑 (𝑟𝑘 |𝑟𝑖 ):

𝑝𝑜 (𝑟𝑘 |𝑟𝑖 ) =
𝑤 (𝑟𝑘 , 𝑟𝑖 )∑
𝑟 𝑗 𝑤 (𝑟 𝑗 , 𝑟𝑖 )

, 𝑝𝑑 (𝑟𝑘 |𝑟𝑖 ) =
𝑤 (𝑟𝑖 , 𝑟𝑘 )∑
𝑟 𝑗 𝑤 (𝑟𝑖 , 𝑟 𝑗 )

. (1)

Definition 2 (Intra-Region Geospatial View). The geospatial
feature of a region can be depicted by its POI distribution p and
road network density d, i.e., f = {p, d} ∈ R𝐷𝐹 , which reveals the
regional function and attribute. Each dimension in p ∈ R𝐷𝑃 denotes
the ratio of POIs of corresponding category, and d ∈ R is computed
as the area size divided by road length.

Definition 3 (Region Profile). For research regions, given their
mobility patterns and geospatial features, a set of learned region
representations E = {e𝑟𝑖 } ∈ R𝑁𝑅×𝐷𝑅 is expected to function as
comprehensive region profiles with the uniform dimension 𝐷𝑅 .

Definition 4 (Urban Dynamic State). Urban ST data includes
taxi demand, POI check-in and so on, which varies across space
and evolving over time [33]. We divide the time range into disjoint
timeslots of equal length. For a region 𝑟 , we denote the dynamic
state (e.g. number of taxi pick-ups) at timeslot 𝑡 as 𝑥 (𝑡 )𝑟𝑖 .

Definition 5 (Urban ST Sequence). According to the First Law
of Geography [19], adjacent regions naturally show explicit spatial
dependency. At timeslot 𝑡 , a region 𝑟𝑖 ∈ 𝑅 is associated with a vector
x(𝑡 )𝑟𝑖 = [𝑥 (𝑡 )𝑟𝑘

] ∈ R𝑁𝑆 where 𝑟𝑘 ∈ NE𝑠 [𝑟𝑖 ] , describing the gathered
urban states of its spatial neighbors including itself and other 𝑁𝑆 −1
regions. Collecting such spatial features in a continuous timeslots
𝑇 , we denote an urban ST sequence as S𝑟𝑖 = [x

(𝑡 )
𝑟𝑖 ]

𝑡𝑐
𝑡=𝑡𝑐−𝑇 ∈ R

𝑇×𝑁𝑆

where 𝑡𝑐 is the last timeslot.
Problem Formalization. For a region 𝑟𝑖 , given a regional ST

sequence with 𝑇 historical dynamic features and corresponding
region profile e𝑟𝑖 ∈ E, the prediction task is formulated as learning
a function 𝑓𝜙𝑟𝑖

(·) to predict next urban state:

[S𝑟𝑖 ; e𝑟𝑖 ]
𝑓𝜙𝑟𝑖
( ·)
→ 𝑦

(𝑡𝑐+1)
𝑟𝑖 (2)

where 𝑦 (𝑡𝑐+1)𝑟𝑖 = 𝑥
(𝑡𝑐+1)
𝑟𝑖 is the ground-truth value, and 𝑓𝜙𝑟𝑖

(·) is a
specific prediction neural network parameterized by 𝜙𝑟𝑖 .

3.2 Meta-Learning Settings
In our work, we consider a region-level ST prediction as a learning
task T𝑟𝑖 = {(𝑆𝑟𝑖 ,1, 𝑦𝑟𝑖 ,1), . . . , (𝑆𝑟𝑖 ,𝑁𝐿

, 𝑦𝑟𝑖 ,𝑁𝐿
)}, where 𝑁𝐿 is the num-

ber of all observed samples in region 𝑟 . Following MAML-based
training settings, each task is divided into a support set and a query

set, i.e. T𝑟𝑖 = {D
𝑠𝑝
𝑟𝑖 ,D

𝑞𝑟
𝑟𝑖 }. The former is used to fine-tune the ini-

tial network during local update, and the latter is used to learn a
generalized initial network during global update, respectively. By
adjusting the number of samples T𝑟𝑖 to mimick few-shot scenarios
and common scenarios, batches of training tasks are sampled to
attain a prediction model with strong adaptability.

4 METHOD
4.1 Overview of MetaRSTP
The key challenges for region-adaptive ST prediction are two-fold.
First, we need to extract comprehensive region features with strong
expressiveness in functional properties. Second, based on the ex-
tracted region profiles, we need to devise effective meta-learning
strategy containing extra region semantics to rule out negative
noise. Therefore, our MetaRSTP consists of the following modules:

Inmulti-view region profile learner detailed in Figure 2(a),
we consider mobility data and geospatial data for multi-view region
representation learning. Two single-view encoders are implemented
separately to derive discriminate feature extraction. Additionally,
we innovatively construct a semantic alignment space which deals
with the underlying semantic constraint between two views and
uncovers co-semantic embeddings. Afterwards, a cross-view atten-
tion mechanism further enhances the profiling expressiveness by
fusing the inter-view cooperation and view-specific uniqueness.

In region-adaptive ST prediction model detailed in Figure
2(b), considering region-varying ST patterns, we innovatively pro-
pose to customize a biased initialization for a specific region. Specif-
ically, with the region profiles as input, a regional bias generator
aims to offer personalized bias in the predictionmodel. Along with a
fixed shared parameter denoting the common ST regularity through
local and global update, the final generated initial network can bet-
ter fit few-shot tasks in a finer granularity of region level. It also
improves the confidence of prediction in an interpretable manner.

4.2 Multi-View Region Profile Learner
4.2.1 Single-View Feature Encoder. Multiple correlations among
regions [29, 30] give insights for the revelation of region profiles.
As they determine the proximity of regions in the embedding space,
thus dominating the region profiling. In our work, we define cor-
relations uncovered by human mobility and geospatial data as
inter-region interactions and intra-region attributes. To capture
single-view regional features, we firstly construct mobility view
encoder and geospatial view encoder individually.

In the mobility view, regions with the same origin distribution or
destination distribution are considered close to each other, giving
hints about analogous urban functions. For each region 𝑟𝑖 ∈ 𝑅, we
connect it with regions with top 𝑁𝑀 cosine similarity in terms of
similar OD contexts:

𝑐𝑜 (𝑟𝑖 , 𝑟 𝑗 ) = CosSim(𝑝𝑜 (𝑟𝑘 |𝑟𝑖 ), 𝑝𝑜 (𝑟𝑘 |𝑟 𝑗 )) (3)
𝑐𝑑 (𝑟𝑖 , 𝑟 𝑗 ) = CosSim(𝑝𝑑 (𝑟𝑘 |𝑟𝑖 ), 𝑝𝑑 (𝑟𝑘 |𝑟 𝑗 )) (4)

With these OD contexts’ correlations, we construct a inter-region
mobility graph G𝑚 = (V𝑅, E𝑚), where V𝑅 denotes 𝑁𝑅 region
vertices, and E𝑚 is the set of predefined 𝑁𝑀 correlated mobility
neighbors for each region. In order to embed the mobility cor-
relations into regions’ embeddings, We employ Graph Attention
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Figure 2: The framework of MetaRSTP. The first module is to extract the multi-view region profiles, including single-view
encoders, semantic alignment and cross-view attention fusion. The second module is to generate regional personalized
prediction model, including the base model, regional bias generator and meta optimization (local update and global update).
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Figure 3: Multi-view region profile learner.

Network (GAT) [20] to update the representation of a region ver-
tex by propagating information to its neighbors with attention
scores. Formally, given the input OD features v = [𝑣1, 𝑣2, . . . , 𝑣𝑁𝑅

]
where 𝑣𝑖 ∈ R𝑁𝑅×2, region 𝑟𝑖 ’s region embedding e𝑚𝑟𝑖 ∈ R

𝐷𝑀 in the
mobility view is updated by the following steps:

𝛼𝑚𝑖 𝑗 =
exp(LeakyReLU(a𝑚 [W𝑚𝑣𝑖 | |W𝑚𝑣 𝑗 ]))∑

𝑘∈NE𝑚 [𝑟𝑖 ] exp(LeakyReLU(a𝑚 [W𝑚𝑣𝑖 | |W𝑚𝑣𝑘 ]))
(5)

e𝑚𝑟𝑖 =
∑︁

𝑗∈NE𝑚 [𝑟𝑖 ]
𝛼𝑚𝑖 𝑗 Φ𝑚𝑣 𝑗 (6)

whereW𝑚,Φ𝑚, a𝑚 are learnable parameters, ∥ is the concatenation,
𝛼𝑖 𝑗 is the attention scores, and NE𝑚 [𝑟𝑖 ] is the set of region 𝑟𝑖 ’s
neighbors which share similar OD contexts.

In the geospatial view, there is a need to transform the coarse
POI and road density features in 𝑟𝑖 to a dense region embedding
e𝑔𝑟𝑖 ∈ R

𝐷𝐺 . Following [29], we employ the most commonly used
structure Multi-Layer Perceptions (MLPs) to implement the geospa-
tial encoder, which is formulated as e𝑔𝑟𝑖 = MLP(f𝑖 ).

4.2.2 Semantic Alignment Space. To enhance the expressiveness
and reliability of acquired region profiles, we proceed to explore
the correlated inter-view cooperation. Though existing methods
attempt to conduct cross-view attention [14] or establish latent
constraints [29], the rich co-semantic representation is not well
modeled in an explicit way, leading to incomplete semantics in
region profiles. In our proposed semantic alignment space, an intu-
itive idea is that two view-specific features of a region can match
each other as they reflect the same underlying regional patterns.
For example, in a center region, mobility correlations with a wide
range of regions matches high road density and multi-type POI dis-
tribution. Thus, exploring the coexistence of distinct view-specific
features helps carry out highly effective urban region profiling.

Motivated by contrastive learning [2], we encode the co-semantic
representation through comparing the positive pairs with negative
ones by the Noise Contrastive Estimation (NCE) objective. The key
is to construct view-to-view mapping alignment. Concretely, for
region 𝑟𝑖 , its region embedding in mobility view and geospatial
view serve as the ground-truth for each other, acting as a positive
pair (e𝑚𝑟𝑖 , e

𝑔
𝑟𝑖 ). By reserving the embedding of 𝑟𝑖 in one view and

sampling the embeddings in another view from other regions, we
can obtain two groups of representations Ê𝑚 = {e𝑚𝑟𝑛 |𝑛 ≠ 𝑖} and
Ê𝑔 = {e𝑔𝑟𝑛 |𝑛 ≠ 𝑖}, where |Ê𝑔 | = |Ê𝑚 | = 𝑁𝑂 is the predefined
negative size. Thus negative pairs are extracted as (e𝑚𝑟𝑛 , e

𝑔
𝑟𝑖 ) and

(e𝑚𝑟𝑖 , e
𝑔
𝑟𝑛 ). For any pair (e𝑚, e𝑔), we take the following alignment

step to capture the possible existing co-semantics ê𝑐 ∈ R𝐷𝐶 within
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two views:

ê𝑐 = Align(e𝑚, e𝑔) = ReLU(W𝑐 ( [e𝑚 ∥e𝑔] + b𝑐 ) (7)

where Align(·) : R𝐷𝑀+𝐷𝐺 → R𝐷𝐶 is a feature transformations
function. To ensure the positive co-semantic representations take
effect, we adopt the InfoNCE loss function [9] to model the inter-
view matching rule in different regions:

L𝑖𝑛𝑡𝑒𝑟 =
∑︁
𝑟𝑖 ∈𝑅

[
− 𝑙𝑜𝑔M(e𝑚𝑟𝑖 , e

𝑔
𝑟𝑖 ) +

(
𝑙𝑜𝑔(M(e𝑚𝑟𝑖 , e

𝑔
𝑟𝑖 )+∑︁

e𝑚𝑟𝑛 ∈Ê𝑚
M(e𝑚𝑟𝑛 , e

𝑔
𝑟𝑖 ) +

∑︁
e𝑔𝑟𝑛 ∈Ê𝑔

M(e𝑚𝑟𝑖 , e
𝑔
𝑟𝑛 )

)] (8)

where M(·, ·) = exp(Align(·, ·)) functions as an inter-view dis-
criminator to evaluate the matching scores between view-specific
region embeddings. After the model training, 𝑟𝑖 ’s real positive co-
semantics e𝑐𝑟𝑖 = Align(e𝑚𝑟𝑖 , e

𝑔
𝑟𝑖 ) is well learned and exploited .

4.2.3 Cross-View Attention Fusion. With the obtained sets of mo-
bility view embeddings E𝑚 = {e𝑚}, geospatial view embeddings
E𝑔 = {e𝑔} and co-semantic embeddings E𝑐 = {e𝑐 }, a cross-view
attention mechanism is used to better propagate knowledge across
multiple aspects. Among them, co-semantic embeddings are viewed
as keys while all the embeddings are taken as queries. We associate
a key matrix K and a query matrix Q∗ (∗ ∈ {𝑚,𝑐, 𝑔}) as follows:

K = EcW𝑘 , Q
∗ = E∗W𝑞 . (9)

whereW𝑘 andW𝑞 are learnable parameters. We then fuse single
views with co-semantic view to achieve final region representations:

𝐴∗ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Q
∗K𝑇
√
𝐷𝑅

), E = 𝐴𝑚E𝑚 +𝐴𝑐E𝑐 +𝐴𝑔E𝑔 (10)

Thus, the attentively obtained region profile set E = {e} contains
comprehensive features of co-semantics and view-specific unique-
ness, making it possible to assist urban tasks as semantic evidence.

4.2.4 Training Objective. To ensure that the region profiles possess
strong applicability in fitting urban multi-tasks, we define a joint
learning objective function from single-view and inter-view:

L𝑒𝑚𝑏 = 𝛽1L𝑚𝑜𝑏 + 𝛽2L𝑖𝑛𝑡𝑒𝑟 + 𝛽3L𝑔𝑒𝑜 (11)

where 𝛽1, 𝛽2 and 𝛽3 are adjustable weights to balance mobility view
loss, inter-view matching loss and geospatial view loss, respectively.
The inter-view loss L𝑖𝑛𝑡𝑒𝑟 has been explained in Equation (8). In
single-view, we expect the learned profiles are able to estimate
the ground-truth distribution of mobility and geospatial data as
accurate as possible. In the mobility view, with region profiles e𝑖 ,
e𝑗 of region 𝑟𝑖 , 𝑟 𝑗 , we can estimate the transition probability:

𝑝𝑜 (𝑟 𝑗 |𝑟𝑖 ) =
exp(e𝑇𝑟𝑖 e𝑟 𝑗 )∑

𝑟𝑘 ∈𝑅 exp(e𝑇𝑟𝑖 e𝑟𝑘 )
(12)

Likewise, 𝑝𝑑 (𝑟 𝑗 |𝑟𝑖 ) is obtained. Then we define the learning objec-
tive L𝑚𝑜𝑏 to minimize the divergence.

L𝑚𝑜𝑏 =
∑︁

(𝑟𝑖 ,𝑟 𝑗 ) ∈𝑅
−𝑝𝑜 (𝑟 𝑗 |𝑟𝑖 )𝑙𝑜𝑔𝑝𝑜 (𝑟 𝑗 |𝑟𝑖 ) −𝑝𝑑 (𝑟 𝑗 |𝑟𝑖 )𝑙𝑜𝑔𝑝𝑑 (𝑟 𝑗 |𝑟𝑖 ) (13)

Similarly, to let the learned region profiles reserve the region simi-
larity in terms of region attributes, we design a task to reconstruct
region correlations based on region profiles. Taking 𝑐𝑔𝑒𝑜 (𝑟𝑖 , 𝑟 𝑗 ) =

CosSim(f𝑟𝑖 , f𝑟 𝑗 ) as label, the learning objective L𝑔𝑒𝑜 in geospatial
view is defined as follows:

L𝑔𝑒𝑜 =
∑︁

(𝑟𝑖 ,𝑟 𝑗 ) ∈𝑅
(𝑐𝑔𝑒𝑜 (𝑟𝑖 , 𝑟 𝑗 ) − e𝑇𝑟𝑖 e𝑟 𝑗 )

2
. (14)

4.3 Region-Adaptive ST Prediction Model
4.3.1 Base Model. The base model aims to predict next urban
state based on historical ST sequences. There exists complex ST
dependency in the dynamics of urban states, as adjacent regions are
mutually affected and a region’s previous states affect subsequent
state. Similar to ST-MetaNet [15], we utilize a GAT to model the
spatial correlations among regions, and a Gated Recurrent Unit
(GRU) to capture the temporal evolvement of each region, which is
illustrated as a GAT-GRU hybrid model in Figure 2(b).

For a region 𝑟𝑖 , we regard its surrounding neighbors as 𝑁𝑆 − 1
connected nodes in a distance-based spatial graph G𝑠𝑟𝑖 . At timeslot
𝑡 , taking G𝑠𝑟𝑖 and regional spatial features x(𝑡 )𝑟𝑖 ∈ R

𝑁𝑆 as input, a
local GAT computes the attention score and gets the output by
weighted aggregation with regions in the neighbor set NE𝑠 :

𝛼𝑠𝑖 𝑗 =
exp(LeakyReLU(a𝑠 [W𝑠𝑥

(𝑡 )
𝑟𝑖 | |W𝑠𝑥

(𝑡 )
𝑟 𝑗 ]))∑

𝑘∈NE𝑠 [𝑟𝑖 ] exp(LeakyReLU(a𝑠 [W𝑠𝑥
(𝑡 )
𝑟𝑖 | |W𝑠𝑥

(𝑡 )
𝑟𝑘
]))

(15)

z(𝑡 )𝑟𝑖 =
∑︁

𝑗∈NE𝑠 [𝑟𝑖 ]
𝛼𝑠𝑖 𝑗Φ𝑠𝑥

(𝑡 )
𝑟𝑘

(16)

whereW𝑠 ,Φ𝑠 , a𝑠 are learnable parameters, and z(𝑡 )𝑟𝑖 is the represen-
tation containing spatial dependency. Afterwards, in order to fore-
cast𝑦 (𝑡𝑐+1)𝑟𝑖 , wemodel the temporal evolution of region 𝑟𝑖 by passing
all the spatial representations along the time span {𝑡𝑐 −𝑇, . . . , 𝑡𝑐 }
through a GRU, which is formulated as:

u = 𝜎 (W𝑢z
(𝑡 )
𝑟𝑖 + U𝑢h

(𝑡−1)
𝑟𝑖 + b𝑢 ) (17)

r = 𝜎 (W𝑟 z
(𝑡 )
𝑟𝑖 + U𝑟h

(𝑡−1)
𝑟𝑖 + b𝑟 ) (18)

h′𝑟𝑖 = 𝜙 (Wℎz
(𝑡 )
𝑟𝑖 + Uℎ (r ◦ h

(𝑡−1)
𝑟𝑖 ) + bℎ) (19)

h(𝑡 )𝑟𝑖 = u ◦ h(𝑡−1)𝑟𝑖 + (1 − u) ◦ h′𝑟𝑖 (20)

where z(𝑡 )𝑟𝑖 , h
(𝑡 )
𝑟𝑖 are the input vector and the hidden state at timeslot

𝑡 , respectively. u, r are update gate vector and reset gate vector.
W𝑢 ,W𝑟 ,Wℎ and U𝑢 ,W𝑟 ,Uℎ are weight matrices. b𝑢 , b𝑟 , bℎ are
biases. ◦ is the element-wise multiplication, 𝜎 (·) is sigmoid function,
and 𝜙 (·) is tanh function. We take 𝑦 (𝑡𝑐+1)𝑟𝑖 = h(𝑡𝑐+1)𝑟𝑖 as the output
prediction value.

4.3.2 Regional Bias Generator. In urban planning, ST dynamics
closely interrelates with region profiles. For example, traffic patterns
are totally different between business centers and industrial parks.
In existing meta-learning methods, shared knowledge extracted
from a set of training tasks is likely to cause negative transfer when
fitting target tasks. To address this issue, a promising approach is
to introduce distinctive region features as indicative weighted bias,
so as to address the gap resulting from other regions.

Thus, we innovatively devise a regional bias generator to con-
duct bias assignment for each region. The key insight is to view
region profiles as the important metadata of ST prediction neu-
ral networks for capturing specific ST correlations. For a region
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𝑟𝑖 , we retrieve the corresponding region embedding e𝑟𝑖 from the
regional profile memory E. Furthermore, the bias generator takes
meta knowledge of region profile as input and outputs the non-
shared bias parameter𝑏𝑟𝑖 . Formally, we denote the trainable weights
of the whole bias generator network as 𝜂, and 𝑁𝑃 is the number
of parameters in the base model. In specific, our designed bias
generator is a function F𝜂 (·) formed by two two transformation
F1 : R𝐷𝑅 → R𝐷𝑂 , F2 : R𝐷𝑂 → R𝑁𝑃 . Similar to the parame-
ter generator method in [13], we implement the region-adaptive
bias generator by two fully connected layers. Compared with the
task-clustering scheme, differentiability and interpretability can
be better guaranteed in this way. Also, besides the consideration
for diverse ST dynamics, when a region profile is analogous to
another region, the initial prediction networks for them still tend
to be similar via parameter adjustment, which ensures that the
inherent correlations between region profile and ST dynamics are
well bridged and learned.

4.3.3 Meta Optimization. Shared regularity among all tasks con-
tribute to fitting regions with few-shot samples, and non-shared
region-specific ST dynamics further improve the prediction model’s
confidence and alleviate the negative transfer issue. For these rea-
sons, in the process of meta optimization, we present a biased
initialization meta-learning strategy with a shared generalizable
parameter and a variable bias to conduct region-adaptive prediction
in a finer way. Algorithm 1 outlines the end-to-end meta training
process. Firstly, for each training task T𝑟𝑖 ∈ T 𝑡𝑟 , its specific base
model is initialized by shared parameters 𝜃 and characteristic bias
𝑏𝑟𝑖 in terms of the meaningful region profile e𝑟𝑖 .

𝜙𝑟𝑖 ← 𝜃 + 𝛾𝑏𝑟𝑖 , 𝑏𝑟𝑖 = F𝜂 (e𝑟𝑖 ) (21)

where 𝛾 is the personalized update rate for controlling how much
region-specific knowledge is added to the shared knowledge. After-
wards, keeping with MAML-based episode training process, there
are following two stages: local update and global update.

During the local update stage, the local network for specific
region is expected to converge to a good local optimum, which is
similar to traditional neural networks’ training. Thus, we update
the local network by minimizing the prediction loss LD𝑠𝑝

𝑟𝑖

of each

T𝑟𝑖 ∈ T 𝑡𝑟 according to its support set D𝑠𝑝
𝑟𝑖 with a local learning

rate 𝛼 .
𝜙∗𝑟𝑖 ← 𝜙𝑟𝑖 − 𝛼 ▽𝜙𝑟𝑖

LD𝑠𝑝
𝑟𝑖

(𝜙𝑟𝑖 ) (22)

During the global update stage, our goal is to obtain a shared
generalizable prediction model 𝜃∗ which can fitting few-shot tasks,
and an effective bias generator 𝜂∗ which bridge the profiles and ST
dynamics. After local update, one-step gradient decent is taken to
update the two parameters based on the sum of the losses on query
set D𝑞𝑟

𝑟𝑖 of each training task T𝑟𝑖 ∈ T 𝑡𝑟 .

𝜃∗ ← 𝜃 − 𝜆
∑︁
T𝑟𝑖 ∈T𝑡𝑟

▽𝜃LD𝑞𝑟
𝑟𝑖

(𝜙∗𝑟𝑖 ) (23)

𝜂∗ ← 𝜂 − 𝜆
∑︁
T𝑟𝑖 ∈T𝑡𝑟

▽𝜂LD𝑞𝑟
𝑟𝑖

(𝜙∗𝑟𝑖 ) (24)

where 𝜆 is the learning rate of global update, and LT𝑞𝑟𝑟𝑖

is the

prediction loss of query set D𝑞𝑟
𝑟𝑖 for prediction task T𝑟𝑖 .

Algorithm 1:MetaRSTP Training Algorithm
input :ST prediction tasks {T𝑟 }, region embedding set E,

learning rate 𝛼 , 𝜆, and bias rate 𝛾 .
output :Trained base model parameter 𝜃∗ and bias

generator parameter𝜂∗

1 𝜃, 𝜂 ← random initialization;
2 repeat
3 randomly select a batch of training tasks T 𝑡𝑟 from {T𝑟 };
4 for T𝑟𝑖 ∈ T 𝑡𝑟 do
5 𝜙𝑟𝑖 ← 𝜃 + 𝛾𝑏𝑟𝑖 ; // 𝑏𝑟𝑖 ← 𝜂, e𝑟𝑖
6 D𝑠𝑝

𝑟𝑖 , D
𝑞𝑟
𝑟𝑖 ← support set, query set from T𝑟𝑖 ;

7 evaluate LD𝑠𝑝
𝑟𝑖

(𝜙) with D𝑠𝑝

𝑖
and update locally:

𝜙∗𝑟𝑖 ← 𝜙𝑟𝑖 − 𝛼 ▽𝜙𝑟𝑖
LD𝑠𝑝

𝑖
(𝜙𝑟𝑖 );

8 evaluate LD𝑞𝑟
𝑟𝑖

(𝜙∗𝑟𝑖 ) with D
𝑞𝑟
𝑟𝑖 ;

9 update globally with
∑
T𝑟𝑖 ∈T𝑡𝑟 LD𝑞𝑟

𝑟𝑖

(𝜙∗𝑟𝑖 ):
𝜃∗ ← 𝜃 − 𝜆∑T𝑟𝑖 ∈T𝑡𝑟 ▽𝜃LD𝑞𝑟

𝑟𝑖

(𝜙∗𝑟𝑖 );
𝜂∗ ← 𝜂 − 𝜆∑T𝑟𝑖 ∈T𝑡𝑟 ▽𝜂LD𝑞𝑟

𝑟𝑖

(𝜙∗𝑟𝑖 );
10 until 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 is met;

5 EXPERIMENTS
In this section, we conduct extensive experiments to answer the
following research questions through our evaluation:
RQ1: Does the proposed MetaRSTP outperform existing methods
in few-shot scenarios and common scenarios?
RQ2: Do the proposed components (e.g., alignment space, bias gen-
erator, and so on) take effect?
RQ3: How the important parameters of the region profile dimen-
sion and the bias rate influence the experiment results?
RQ4: Can the generated region profiles possess practicability for
other urban tasks?

5.1 Settings
5.1.1 Datasets. From NYC Open Data1, we collect several real-
world datasets including 180 regions split by streets in Manhattan.
To carry out multi-view region profile learning, we apply taxi trip
data as mobility view, and take POI data [25], road network data2
as geospatial view. Additionally, the district division is provided by
the community Boards from [1]. Further practicability assessment
on region profiles involves the use of check-in data, crime data, and
land usage data. We list the description of each dataset in Table 1.

Following [15], we set our tasks as predicting regional future
pick-up and drop-off volumes and conduct experiments on taxi
trip datasets, which contains time and geographical coordinates of
pick-ups and drop-offs. For each region, we count the volumes per
30 minutes based on the number of taxis entering or exiting the
region. Furthermore, a total number of observed data in roughly
5760 timeslots are divided into 80% for meta-training and 20% for
meta-testing and evaluating.

1http://opendata.cityofnewyork.us/
2https://www.openstreetmap.org/

http://opendata.cityofnewyork.us/
https://www.openstreetmap.org/
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Table 1: Datasets

Dataset Description

Census blocks Boundaries of 180 regions split
by streets in Manhattan.

Taxi trips Around 30 million taxi trip records
during four months.

Check-in & POIs Over 200 thousand check-ins and
4 thousand POIs of 246 categories.

Road network Road distribution including road
length and area size in Manhattan.

Crime data Around 40 thousand crime records
during one year.

Land usage 12 types of districts classified
by urban functions.

5.1.2 Baselines. We compare MetaRSTP with the following repre-
sentative ST prediction methods. To be fair, all the meta-learning
methods use GAT-GRU as base model.
• DCRNN [11], a classic model in traffic prediction, uses a
diffusion convolusion and Seq2Seq to mine ST dynamics.
• MAML [5] learns a globally-shared initialization from all
tasks and generalize to an unseen task.
• ST-MetaNet [15] derives region-aware models based on
learned representations from regional geo-graph graphs.
• MetaPTP [24] devises a meta strategy that learns clustered
initial networks from ST tasks with similar samples.

Besides the evaluation on the whole model and our designed meta-
learning strategy, we also compare with four embedding methods
by replacing the multi-view region profile learner in MetaRSTP.
• node2vec [8] uses biased random walks to learn node latent
representations by skip-gram models.
• MVURE [30] employs weighted multi-view fusion with hu-
man mobility and inherent region attribute data including
features of POIs and check-ins.
• MGFN [22] designs a multi-level attention mechanism to
learn region profiles from multiple mobility patterns based
on intra-pattern and inter-pattern correlations.
• ReMVC [29] features in the schemes of hierarchical intra-
view and inter-view contrastive learning.

5.1.3 Experiment Setup. In our method, two modules are trained
by Adaptive Moment Estimation optimizer separately. In region
profile learning, we set the dimension of embeddings as 𝐷𝑀 =

𝐷𝐶 = 𝐷𝐺 = 𝐷𝑅 = 96. The number of mobility neighbors 𝑁𝑀 is 20,
and the negative size 𝑁𝑂 for contrastive learning is 10. Moreover,
we set 𝛽1 = 1, 𝛽2 = 10, 𝛽3 = 5 to balance the scale of three types of
losses. The learning rate is 1e-3 over 500 epochs. In ST prediction
module, we use 𝑇 = 10 to predict urban state in next timeslot.
GAT-GRU is implemented by single-layer GAT and GRU with 128
hidden units, and the number of spatial neighbors 𝑁𝑆 is 20. In meta-
training period, we sample 4 training tasks in each iteration, and
set the training epochs to be 100 with early stopping strategy. The
learning rates of local update 𝛼 , global update 𝜆 are 1e-2 and 1e-4,
respectively. For the bias generator, we build two-layer FCNs with
hidden units [16, 64, 𝑁𝑃 ], where 𝑁𝑃 is the number of parameters
in the base model, and set the bias rate 𝛾 = 0.2. All the methods are
implemented using PyTorch on a single Nvidia RTX 4090.

5.1.4 EvaluationMetrics. We leverage two commonly-usedmetrics
to evaluate one-step prediction performance: Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE).

MAE =
1
𝑛

𝑛∑︁
𝑖=1
|𝑦𝑖 − 𝑦𝑖 |, RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1
∥𝑦𝑖 − 𝑦𝑖 ∥ (25)

where 𝑛 is the number of instances, 𝑦𝑖 is the prediction result and
𝑦𝑖 is the ground truth.

5.2 Performance Comparison (RQ1)
Table 2 presents the performance of our proposed MetaRSTP in
comparison to eight baselines in predicting pick-ups and drop-offs.
Denoting the ratio of draw-out training samples in each task as
𝐾 , we choose 𝐾 = {5%, 10%, 20%} to simulate prediction in few-
shot scenarios, and use “overall” to represent prediction with all
the training samples as common scenarios. From the table, we can
summarize the following conclusions from two aspects.

5.2.1 Embedding Model Comparison. Compared with embedding
methods, MetaRSTP with our designed multi-view region profile
learner achieves superior performance. Among them, node2vec per-
forms worst, suggesting that a simple concatenation is insufficient
to fully exploit the complex multi-view information of a region.
Its generated region profiles may even act as noise in the “overall”
pick-up prediction, since the prediction model with them perform
worse than MAML without extra semantic knowledge. MVURE
with multi-view fusion lacks explicit modeling for co-semantic in-
formation, causing decline of its performance. MGFN generates
single-view region profiles and suffers from limited performance
due to the lack of the geospatial view. ReMVC depends on strong as-
sumption that each regions’ view-specific embeddings follow strict
matching principle without the explicit co-semantic representation.
Though MGFN and ReMVC get competitive results, our region
profiles perform best, as we consider the view-specific uniqueness
fusion and cross-view co-semantic alignment amongmultiple views,
thus attaining high-quality region profiles for further prediction.

5.2.2 Meta-Learning Strategy Comparison. Among the ST predic-
tion models, MetaRSTP outperforms all the baselines with vary-
ing numbers of training samples of each task and shows 12.28%
and 7.74% average improvements on MAE and RMSE beyond the
sub-optimal models, respectively. Particularly, the performance of
DCRNN degrades significantly with limited data when 𝐾 = 5%
compared to other meta-learning methods. MAML achieves better
results than DCRNN as it can allocate an effective initial network
for tasks with limited samples. ST-MetaNet’ s promising results
verifies the importance of considering regional ST dynamics. Also,
MetaPTP gives a finer initial model for regions in a same clus-
ter with higher accuracy, improving the strategy of MAML which
learns a global initialization and is more likely to introduce negative
noise. MetaPTP’s better results than ST-MetaNet in most cases can
be explained as that ST-MetaNet focuses on region itself and may
ignore common ST trends among regions. Finally, our proposed
MetaRSTP further enhances the performance due to two reasons:
(1) modeling the region-agnostic common ST dynamics as common
initialization. (2) additionally considering the uniqueness of region
profiles to offer finer-grained prediction in region level.
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Table 2: Performance of MetaRSTP and baselines in terms of MAE and RMSE on taxi pick-up and drop-off prediction. The best
and the second-best results are highlighted in boldface and underlined respectively.

Methods node2vec MVURE MGFN ReMVC DCRNN MAML ST-MetaNet MetaPTP MetaRSTP

pick-up
prediction

K=5% MAE 21.949 17.949 18.071 17.602 28.116 24.974 22.889 19.230 16.478
RMSE 28.833 26.803 26.136 25.564 33.367 29.327 28.915 26.128 24.891

K=10% MAE 16.445 15.802 15.526 14.255 24.974 16.250 16.013 15.247 13.278
RMSE 26.274 24.484 23.888 23.694 31.209 27.795 27.128 25.109 22.499

K=20% MAE 15.629 14.407 13.120 13.379 19.729 15.911 15.119 14.239 12.312
RMSE 25.711 23.815 22.436 23.068 29.327 26.963 26.046 22.291 21.329

overall MAE 13.950 11.471 10.517 11.532 15.569 12.773 13.329 10.329 9.231
RMSE 23.228 20.647 19.117 20.007 25.573 23.118 23.831 20.548 17.800

drop-off
prediction

K=5% MAE 22.260 18.323 16.825 15.701 19.987 23.232 16.185 18.986 15.120
RMSE 29.137 28.501 27.407 26.512 33.974 29.489 27.768 27.896 25.978

K=10% MAE 17.293 15.368 14.671 14.907 22.554 16.023 16.406 15.889 13.424
RMSE 26.322 24.173 23.741 24.576 29.884 27.039 24.942 24.676 22.762

K=20% MAE 16.275 15.620 14.991 13.675 16.794 15.905 13.440 14.089 12.969
RMSE 23.883 21.495 21.556 20.085 28.227 22.418 21.855 22.692 20.856

overall MAE 12.531 11.986 10.124 9.433 16.727 10.363 11.586 9.336 7.889
RMSE 19.850 18.760 17.834 17.049 25.142 19.319 20.861 18.125 16.097

Table 3: Performance comparison on MetaRSTP’s variants.

Methods pick-up prediction drop-off prediction
MAE RMSE MAE RMSE

𝑤/𝑜.𝑚𝑜𝑏 11.239 19.870 10.382 18.392
𝑤/𝑜.𝑔𝑒𝑜 10.032 18.392 9.543 17.492
𝑤/𝑜.𝑎𝑙𝑖𝑔𝑛 9.931 18.933 8.983 17.329
𝑤/𝑜.𝑓 𝑢𝑠𝑖𝑜𝑛 10.289 18.239 10.349 18.194
𝑤/𝑜.𝑚𝑒𝑡𝑎 16.219 24.493 15.403 23.506
𝑤/𝑜.𝑏𝑖𝑎𝑠 11.382 19.439 12.403 19.540

Full Version 9.231 17.800 7.889 16.097

5.3 Ablation Study (RQ2)
To better understand the effect of each component in MetaRSTP,
we investigate six MetaRSTP’s variants: (1)𝑤/𝑜.𝑚𝑜𝑏 removes inter-
region mobility view modeling; (2)𝑤/𝑜.𝑔𝑒𝑜 removes intra-region
geospatial view modeling; (3) 𝑤/𝑜.𝑎𝑙𝑖𝑔𝑛 removes semantic align-
ment space within two views; (4) 𝑤/𝑜.𝑓 𝑢𝑠𝑖𝑜𝑛 removes different
views’ combination and only use co-semantic representation; (5)
𝑤/𝑜.𝑚𝑒𝑡𝑎 removes meta-learning framework and only use base
model; (6) 𝑤/𝑜.𝑏𝑖𝑎𝑠 removes the regional bias generator. The re-
sults of ablation tests on pick-up prediction and drop-off prediction
are detailed in Table. 3. Through the table, we can observe that:

MetaRSTP which considers multi-view information generally
has better performance than those considering only single-view
data, i.e.,𝑤/𝑜.𝑚𝑜𝑏 and𝑤/𝑜.𝑔𝑒𝑜 . The result demonstrates that each
view has its own merit to enhance the region representation. Mean-
while, the model𝑤/𝑜.𝑔𝑒𝑜 outperforms𝑤/𝑜.𝑚𝑜𝑏 on both two tasks.
One possible reson is that POIs often suffer from data sparsity
problem. The second observation is that the combination operation
and the alignment operation are both integral. Since 𝑤/𝑜.𝑓 𝑢𝑠𝑖𝑜𝑛
and 𝑤/𝑜.𝑎𝑙𝑖𝑔𝑛 both suffer from worse performance than the full
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Figure 4: Performance comparisonwith different dimensions
of the region profile and different bias rate.

version. Thus, it is proved that inter-view contrastive learning can
fully exploit the importance of information propagation between
views, and fusion operation ensures the unique expressiveness of
each single view. In common scenarios,𝑤/𝑜.𝑚𝑒𝑡𝑎 degenerates into
base model, suffering from failing to adapt to each region with
fine-tune. Also,𝑤/𝑜.𝑏𝑖𝑎𝑠 without region-specific knowledge seems
to degenerate into the MAML model, and performs worse than
MetaRSTP due to the same initialization for all tasks, proving that
the bias generation method helps to derive a reliable initial network
for each region and transfer knowledge across various regions.

5.4 Parameter Sensitivity Analysis (RQ3)
In this section, we investigate how the performance of MetaRSTP
varies with different dimensions of region embedding and different
bias rates, and find the optimal settings.
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Figure 5: Performance comparison of different embedding
models with Lasso regression model on downstream predic-
tion tasks.

5.4.1 Effect of the Dimension of Region Profile. The dimension
of region profile directly impacts the expressiveness of regions
and the efficiency of bias generation. As shown in Figure 4(a) and
Figure 4(b), increasing the value of region profile from 32 to 96
leads to visible improvements in performance for both tasks. This
fact also illustrates that the bias learned from multi-view region
profile essentially takes effect. When the dimension value exceeds
96, the prediction model seems to easily overfit and perform worse
results. As a reasonable dimension can reflect the corresponding
knowledge and keeps good performance, we select 𝐷𝑅 = 96 as the
region profile dimension.

5.4.2 Effect of the Bias Rate. Bias rate is an importance hyperpa-
rameter in adjusting the region-specific knowledge ratio. Figure
4(c) and Figure 4(d) depict the influences on MAE and RMSE with
changing bias rate. A appropriate rate value can introduce region’s
personalized knowledge to make better prediction and don’s in-
fluence the generation capability of the sharing initialization. It
is observed that the performance has a slight drop when the rate
is more than 0.2 on both tasks. We infer that this is because sam-
pling too many unique region’s knowledge will become harmful to
preserve the common ST dynamics reflected by the sharing initial-
ization. Thus we choose well-performing bias rate 𝛾 = 0.2.

5.5 Case Study: Inspecting the Region Profiles
(RQ4)

In order to further explore the practical applicability of our learned
region profiles, we present the results of two types of urban related
tasks: prediction task and clustering task.

5.5.1 Prediction Tasks. Crime count prediction and check-in num
prediction are two important urban downstream problems. To eval-
uate the effectiveness of different region profiles from different
methods, we use a simple Lasso regression model for these down-
stream tasks and consider region profiles as features. Prediction
performance is measured by MAE, RMSE and Coefficient of Deter-
mination (𝑅2). As shown in Figure 5, our learned region profiles
outperforms all the embedding methods.

Thus, it is verified that the comprehensive region profiles can
be applied to estimate multiple urban dynamic states with simple
prediction models. As if two regions are close in an embedding
space, their similar profiles will drive their similar states in multi-
domains. In other words, region profiles function as a kind of fixed

Table 4: Performance comparison on land usage classification

Method NMI ARI F-measure
node2vec 0.676 0.427 0.481
MVURE 0.761 0.571 0.605
MGFN 0.749 0.566 0.581
ReMVC 0.730 0.536 0.589

MetaRSTP 0.788 0.657 0.677

Figure 6: Clustering visualization results in Manhattan.

semantic features to solve multiple urban issues, alleviating the
difficulty of acquiring data.

5.5.2 Clustering Tasks. We further turn to explore the effect of
region profiles in land usage clustering task. In specific, we conduct
K-means (𝑘 = 12) clustering with the region profiles as inputs, and
regions that belong to the same cluster are categorized as the same
type. As shown in Table 4, we evaluate the performance by three
metrics: Normalized Mutual Information (NMI), Adjusted Rand
Index (ARI) and F-measure. The table illustrates that our learned
region profiles well fit clustering tasks and perform best.

We also visualize the clustering results in Figure 6, where regions
in the same color are viewed as belong to the same type. It is
observed that our results effectively delineate the boundaries of
district division and are the closest to the label. It thus shows the
interpretation of our designed region profile learner, as a good
embedding network should derive the target embeddings which
can reflect similarities. Especially in the top part marked with a red
rectangle, some clusters are mixed in other embedding methods.
Since our method gives more satisfying identification with clearer
boundaries, the region functionalities are well preserved. These
results further demonstrate the potential applicability of region
profiles as powerful semantics in a variety of urban issues.

6 CONCLUSION
In this paper, we propose MetaRSTP, an adaptive meta-learning
framework with robust region profiles to improve personalized
ST prediction performance in few-shot scenarios. We first learn
comprehensive multi-view region profiles via semantic alignment
and fusion to uncover the functions of regions. A bias generator
further models the inherent correlations between region profiles
and ST dynamics. Then, the biased initialization meta-learning
strategy results in better region-adaptive prediction in few-shot
scenarios due to the combination of region-agnostic regularity
and region-specific semantics for fine-tuning. Finally, extensive
experiments on real-world datasets demonstrate the superiority of
MetaRSTP and the availability of region profiles.
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